CHAPTER III

RESOLVENT AND SPECTRAL
FUNCTIONS OF LARGE POOLED
SAMPLE COVARIANCE MATRICES

The purpose of this chapter is to single out the leading parts
of spectral functions of pooled sample covariance matrices which
present the weighted sums of sample covariance matrices calculated
over samples from different populations. We consider two popula-
tions &7 and G5 without assumptions on distributions having, in
general, different true covariance matrices, and study relations be-
tween leading parts for spectral functions of true covariance matrices
and for pooled sample covariance matrices under high dimension and
large sample sizes. These relations, in particular, can be used for the
improvement of the standard linear discriminant procedure when it
is applied to a wide class of populations.

Problem Setting

Let x = (x1, ... ,X,) be observation vectors from two populations
G and G;3. We restrict the populations with an only requirement
that all four moments of all variables exist. For convenience let
E x = 0 in the both populations. Define the parameters

M, =max sup E (eTx)? forx in &,, v=1,2.
Yoo lel=1

M = max (M, Ms), (1)

where (and in the following) non-random vectors e are of unit length
(the absolute value of a vector means its length). For simplicity let
M > 0. Denote ¥, = cov (x,x) for x in population &,, v = 1,2.
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62 III. SPECTRA OF POOLED COVARIANCE MATRICES

Define

v, = sup var (x?Qx/n)/M for x in &,, v=1,2,
2ll=1

v = max (71,72), (2)

where () are non-random real symmetric positive semidefinite matri-
ces of unit spectral norm (only the spectral norms of matrices are
used). The values v measure the variance of quadratic forms and
restrict the dependence of variables (see Introduction).

Let X; and X3 be two (independent) samples of size N7 > 1 and
Ny > 1 from &1 and S,. Denote N = Ny + Ns. Define

%, =N"! Z Xm, S, =N71 Z xmxﬁ,

Xm€Xy Xm€Xy
Oy = Nil Z (Xm - xu)(xm - XV)T7
Xm€X,

where m runs over numbers of all vectors x,, from both samples
X,, v=1,2. We consider pooled sample matrices of two forms

S:(lel—f—NgSQ)/N and C:(N101+N202)/N,
the expectation matrix ¥ = (N131 + NoXs)/N, and the resolvents
Ho=Ho(t)=(I+tS)™" and H=H(@t)={I+tC)"*, t>0.

Note that tHy(t) and tH(t) can be considered as regularized ridge
estimators of the matrix ¥~ 1.
We will be interested in functions

V, =e'Hox,, ®,,=x.Hox,, U,=e Hx,,
VU, =x Hx,, v,u=12. (3)
We also consider the functions
ho(t) = E n~'tr Ho(t), h(t)=E n"tr H(t),
Sov = Sou(t) =1 —t/N E tr (Ho(t)S,),
sy =5,(t)=1—t/N Etr (H(t)C,), v=12. (4)
For brevity, denote t, = tN, /N, v = 1,2, and
y=n/N, 7=vVMt §=05(t)=2r%>*y+72/N). (5)
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Spectral Functions of Pooled Random Gram Matrices

The main tool of our proofs will be the method of alternating
elimination of independent variables. For the convenience of nota-
tions, we enumerate sample vectors from both X; and X5 in such a
way that x; € X; and x5 € X5. Denote

S¥ =8 - N-'x,xI' HY=(I+1tS")"",

¢, =x.HYx,/N, ¢, =xHyx,/N, v=1,2. (6)

It is easy to verify the identities

Hy = HY —tHYx x,Ho/N, Hox, = (1 —t,)HyXpm,
(1+te,)(1—th,)=1, m=1,2. (7)

Let e be a non-random unit vector with n components. Denote
v, =v,(t) = e Hyx,, wu, =u,(t) =elHox,, v=12.

From (7) and (1) it is obvious that

Uy = (]- - twv)vu» 0 S tflpu S 13
E(1-td,)=s0,(t), Evi<M, v=12. (8)

THEOREM 3.1. Ift > 0, then

E Hy(t) = (I +t150151 + t250252) " + Qo,
var (e Hy(t)e) < 72/N. 9)

Proof. We eliminate the vectors x,,, v = 1,2. By (7),
tyHoxuxf =t,(1— tz/),,)ngyxf, v=1,2.
The expectation E Hyox,x! = E HyS,, v = 1,2. Clearly, the sum

tWE HyS; + toE HySo = I — E Hy. On the right hand side we
substitute 1—tv, = s, —A,, where A, is a deviation of £, from the
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expectation value, and notice that E Hyx,x, = E HyX,, v =1,2.
It follows that

I —E Hy=t1501E H}%1 + tasoeE HESo + Q + Qa, (10)

where Q, = —E t,H¥x,x.A,, v = 1,2. Let us substitute the
expressions for HY in terms of Hy using the first equation from (7)
with the transposed left and right hand sides, v = 1,2. Equation
(10) can be rewritten in the form

I=E HyR+Q + Qy + Q) + Qo

where Q, = tt,50,N"'E Hox,x HYY,, v = 1,2, and R = I +
t1501%1 + t280222. We multiply both parts of this equation by
R~! from the right. It follows that R~ — E Hy = €y, where
Qo = (1 + Q0 +O +QQ>R_1. Let e be the eigenvector for the max-
imum eigenvalue of the symmetric matrix €0g. Using the Schwarz
inequality, (8) and (1), we find

(eT0e)? <HE AIE |(e” Hix1)?(x]e)?| < Mt*var (typ;) < 126.
Similiarly, (eTQ;e)? < 725. Further, we have
leTQue| < tt; N7'E |(eT Hox1 ) (xF Hi%1e)|.

Here, by (8), e Hox1| < |v1], [|Z1]] < VM and by (1) the left hand
side is not greater 72/N. Similiarly, |e? Qse| < 72/N. We obtain the
statement of Theorem 3.1. [J

THEOREM 3.2. Ift > 0 then:

1° t (BEV,)? <wsy, tvarV, <wy, v=12;

2° t,®,,<1, t,E®,, =1-5p,+0, where 0> < ws,
var (t,®,,) <wgg, v=1,2;

3° var (el Hpe) < 7%

4° t1toE B0 < 0, where 0% <wsy, tivar Bro < wop;

59 seu(t) > (1+71y)~t, v=1,2



SPECTRA OF POOLED RANDOM GRAM MATRICES 65

Proof. First, we notice that S; = O} + ;%] and S = A +
t1X1%], where A is a symmetric positive definite matrix. Denote
y = A~'/2%,. Then we can write:

8@ =ty (I +tyy”) 'y = tiy* (L + t1y?) "

IN
—_

Similiarly, tQ(I)QQ S 1.

Now let v = 1,2. Obviously, Ev, = 0and EV, = E u, =
E (1-ty,)v, = —E Ayv,, where A, is a deviation of ¢, from the
expectation value. Using (7) we have

tE V,)? <tE o2 var th, <tVM 6§ =70 < wsy.

This is the first statement of our theorem.

To estimate var V,,, we use the martingale Lemma 2.2. Let v = 1.
We eliminate the vector x;. Denote X3 = %X; — x; /Ny, St = S —
tx1x7' /N, and wy = x¥ H}%;. Then

X{Hoil(l + tX{H&Xl/N) = X?H&il = wWq.

It follows that |x¥ Hox;| < |wi|. By (1), we have t*#2E wi <
Mt*t?E (xF H}%,)?. The expression in the parenthesis is the func-
tion ®1; with one vector eliminated. Since t;P1; < 1 we conclude
that t?t2E w} < Mt? = 72. First, we eliminate the dependence on
x1 € X1 and then on x5 € X5 from V;. Using (7) we have

Vi =elHox, = e" H}x, + e Hix; /N — te” Hyxix] Hi%, /N
= eTHéfcl + Ul(l/Nl — twl/N)
On the other hand, V; = eT Hyx; = e? HZ%X; — tuoxd H3%1/N. Tak-
ing into account random vectors from both X; and X3, by Lemma
2.2, we obtain

t var (eTH()Xl) S tNlE J% +tN2E O'%,

where 01 = u1(1/Ny — twy/N), 09 = uox3 H2%X;/N. From the in-
equality t1P11 < 1 it follows that also tlingil < 1. We obtain

tE 07 <26,E u?(N; 2+ E t*wiN %) < 47(1 +7)/NE,
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toE 03 < to,BE uit’E x] HZ%,/N? < 7/NN;.

Using these inequalities, we derive the required inequality for ¢ var
V1. The symmetric estimate for v = 2 follows from assumptions.
Statement 1 of the theorem is proved.

The first relation of statement 2 can be immediately deduced.
Consider the expectation values. We have

tlE q)ll = tlE X?Hoil = tlE X{Ho)zl
= tlE X?H()Xl/Nl + tlE X?Hofil.
Here the first summand in the right hand side equals the product
tE 191 = 1 — sp1. Using the second equation in (7), we can write the
second summand as E t;x¥ H}x; (1 —t1;). Let us replace the differ-
ence in the parenthesis by 1 — tE 1, — A1, where A is a deviation
of ti, from its expectation. The contribution of the constant part
of 1 — ¢4y vanish. Since t1®1; < 1, by eliminating the vector x;, we
obtain that t1 (X7 Hox;) < 1 and
t1|E x] Hoxi Aq| < [t2 B (x] Hy%p)? var tap]"/?

< [VME 2(xTH}%,)8Y? < V76 < \Jass.

To estimate var ®11, we again use Lemma 2.2. Let us eliminate
the vector x;. We can rewrite ®;; = X7 HypX; in the form

xTH{ %, + 2%T Hox1 /N1 + xT Hox, /N? — txT Hoxy xT Hi%, /Ny,
where X; = X3 —x31/N;. On the other hand, excluding x5, we obtain
(I)l]_ = )_({Hg)_(]_ - t)_({H0X2X31Hg)_(1/N.

By Lemma 2.2 we have var ®1; < V;E O’% + N>E O’%, where o7 is
the sum of the last three summands of the first expression, and o5
is the last summand of the second expression for ®1;. Using (7) and
(1), we obtain that t;%7 Hyox; < 1 and

t2E (x] Hox1)? < 2B (xTH}%,)? < VM2 E 3T HY?%, < 7,
t3(x] Hox1)?/N? = t]y7 <1,

PEE (X1 Hoxix] Hi%,)? < PBE (3] Hyxp)* < 72°E wi < 72,
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where the second superscript denotes the square. If we put xo = 0,
then the relation ¢ ®1; < 1 implies tp‘(ngil < 1. Hence,

PEE (7 HoxoxT H2%1)? < 22F (7 H2x)'!

< IE (xTHPx,)? < 72

Substituting these inequalities, we obtain the inequality t;var ®1; <
a(1+72)/Ny < wop, where a is a numerical constant. The symmetric
relation for v = 2 follows from assumptions. Statement 2 is proved.
To prove statement 3 it suffices to repeat the arguments used in
the proof of Lemma 2.3 with our resolvent Hj.
Further, from definition of ®5; it follows that

tE @21 =tE )’choxl =tE igH&Xl(l — t?/)l) = —tE igH&XlAl,

where A; is t(¢y — E ¢1). Estimating the right hand side by the
Schwarz inequality and using (1) we obtain

(E ®15)% < OE (xTH}%,)? < OE (%I H}*%0)VM.

Here ||H?|| < ||H}||, and the expression in the parenthesis is not
greater ®oo with x; = 0. Since t3®P90 < 1, we can conclude that
t1to(E ®91)% < 76 < wso.

To estimate the variance of ®9; we rewrite this value in the form

=T = T rrl T = T rrl T =
Do = X3 Hoyxo = X1 H0X2 + X3 HOX2/N1 —tx3 H0X1 X3 HOX2/N2,

where the first summand does not depend on x;. Using Lemma 2.2
we can state that var ®15 < N1E 02 + NoE 03, where oy is the sum
of the last two terms and o9 is a symmetric expression. Using (7)
we obtain

E 02 < [E (xTHoxo)*E (1/N, — txT H}x, /N)*4V2,
t*3E (x] Hoxo)* < t?83E (x| Hj%X»)* < M*$3E (x5 Hj%2)? < 72,

and
EE (X Hix)* < MPPEE (xT H3?*%,)? < 72,
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where the second superscript 2 means the square. From these in-
equalities it follows that N E 07 < 37(1/Ny+7/N7). The symmetric
statement follows from assumptions. Combining these we obtain the
inequality t?var ®15 < 37(1 4 7)/Np < wag. Statement 4 is proved.

Now define 11 = x1H}x1 /N, 11 = x1Hox1/N. Using (7), we
find that so1(t) equals

1—-Etr H()Sl/N =1—tE ¢11 =E (1 +t(p11) Z (1 —|—tE @11)_1.

Here tE ¢1; < tE x3/N < 7y. The symmetric inequality for sgo
follows from assumptions. We obtain the last statement. Theorem
3.2 is proved. [J

Spectral Functions of Pooled Sample Covariance Matrices
THEOREM 3.3. Ift >0, Ny > 1 and Ny > 1 then:

1° tEU?<uwss, v=1,2;
2 B |[H(t) - Holt)|> < wes;
3° B H(t) = (I +t1501(1)21 + tasoa(t)D2) 1 +Q,  [|Q]? < wes;
var (e"H(t)e) < ar?/N, where a is a numerical coefficient;
4° t,50,E U, =1—50, +0,, 0°<w;
t?,var U, <wg, v=1,2;
59 titoE U2, < weg.

Proof. We start from the identities

H = Hy + t Hx, X1 Hy + ty HXoX2 Ho,
Uy = Vi + 61U P11 + 12Uz P2,
Uy =@y + 6011 Py + 62W12Po,
Uig = Pro + 1 V11 P12 + 12 V12Pas. (11)

Using the relation 1 — ¢1$117 = sg1 — 01 from Theorem 3.2, we have

so1Ur = Vi — Uro1 + Uz Py
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We square the both parts of this equation, multiply by ¢; and calcu-
late the expectation. Using the Schwarz inequality we obtain

tise, (B U2 /3 <t (B V1)? + 4, E UZo? + t,E Uzt t,E @2, (12)

Here, by Theorem 3.2, the first summand is not greater wso. In the
second summand, t1 E U12 <tHE 5(% < tlmn/Nl = Ty, o% < wsa.
In the third summand, t2E U2 < 7y, and by Theorem 3.2, we have
t1tsB ®3, < wsy. Thus the right hand side of (12) is not greater
wez. But sg; > 1+ 7y. It follows that t;(E U;)? < wgs. The similiar
estimate for v = 2 follows from assumptions. Statement 1 is proved.

Further, by (11), for any non-random vector e of unit length
e"Hpe —eT"He = t,U, V| + t,Us Vs, and consequently

|E Hyo — E H||> <2E H,UE t,V? + 2E t,USE t,Vy.

But t,U,, <1, v =1,2. From Theorem 3.2, statement 2 follows.
Consider the expectation in the formulation of statement 3. We
have
E H = ([+ t1S0121 + t280222)_1 + Q,

where Q = Qo+E H—E Hy. By Theorem 3.2, we obtain ||Q||? < wes3.

To estimate the variance of e” He, we apply Lemma 2.2. Let
us eliminate vectors x; € ¥; and xo € X3. Define C¥ = C —
x,xL /N +%xx, /N +x,%/N, which does not depend on x,,, v = 1, 2.
Let H” = (I +tC")~!, v =1,2. Then

H” = H—tH"x,x,H(14+1/N)/N+tH"%,x. H/N +tH"x,X. H/N,

v = 1,2. We apply Lemma 2.2 eliminating the dependence first on
x7 and then on x5. We obtain

var (e He) <at’N=? Y E [(e" H"x,)*(x] He)?
v=1,2

+ (eTH'x,)*(x  He)? + (e"H"x,)*(xL He)?).

where a is a number. Here e’ Hx,| < |e" H"x,|, E (el H"x,)* <
M, and E %2 < vVMy, v = 1,2. Using this relation we obtain
var (el He) < ar?/N. Statement 3 is proved.



70 III. SPECTRA OF POOLED COVARIANCE MATRICES

Further, we start from (11). Substituting 1 — ¢;®1; by Theorem
3.2, we find
501W11 = P11 + V11 Ay + oW 10Poy, (13)

where Ay = t1(®1; — E ®17). Let us multiply the left hand side by
t1 and calculate the expectation value. Using the Schwarz inequality
we obtain the relation t1591E U1 = 1 — sp1 + 0, where

02/3 < ws + t%E \I/%IVBI (th)u) + t1tE (I)%ztthE \11%2.

Here t2E ¥y < t2E (x3)? < Mt3y? = 7%y By Theorem 3.2, we
have that tthE (I)%Q S W52 and tthE \I/%Q § tthE i%i% S 7'2y2. We
conclude that 0> < wrs. The symmetric statement for oy follows
from assumptions.

To estimate the variance of ¥1; we also start from (11). It suffices
to estimate variances of the summands. Multiplying by ¢; and using
the Schwarz inequality and the equality ¢1to®12 < 1, we obtain that
s3,var (t1¥11)/3 is not larger than

var (tl(pll) —+ E (t1\1111)2var (th)ll) +t1t2E (13?2 tthE \II%Q
Here, in the right hand side,

E (t01)? < HE (x7)? < 7%,
E t1t,0%, < t1t,E 2%2 < 729%

Using Theorem 3.2, we find that the right hand side is not greater
wrg. Since sg1 > 1 4 1y, the second part of statement 4 follows.

Further, (11) 1mphes that 802\1/12 = @12 + \IflgAQ + thfllélg,
where Ay = t9(Pg3 — E Po). We square both parts of this equality
and multiply by t1ta. It follows that s3,t1t,E W2,/3 is not greater
than

tthE (I)%Q + tthE \I/%Q var (tzq)Qz) + t%E \11%1 tthE @%2

Here the first summand does not exceed wss; in the second summand
titoE U2, < 7292 var ta®yy < wog, and in the third summand we
have 2E ¥%, < 72y2. We obtain wy4 in the right hand side. Taking
into account that so; > 1+ 7y, we come to statement 5. The proof
of Theorem 3.3 is complete. [J
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We now find the relations between sg, and s, and consider the
unbiased estimators of these. Define

S0y = Sou(t) =1 —t/N tr HyS,, §,=3,(t)=1—t/N tr HC,,
Uy, =(1-35)/(t5), v=12

THEOREM 3.4. Ift >0, then forv=1,2:

1° S0(t) >1=n/N,, 3§,(t)>1—n/Ny;

2° E [3,(t) — sou|* < wir;

3% E [Sou(t) — sov(t)]* <0 < way;

4° 1 —sp,(t)
=1/N s0,(t) tr [S, (I + t1501 ()21 + tasea(t)82) L 4+ 0y,
where 012, < wg4;

52 2(1 —y)’E (¥, — U,,)% < woe.

Proof. We note that ¢, /N tr (HoS,) = 1/Ntr (I —t2H,S,) < y.
Obviously, 8o, > 1 —n/N,, v =1,2. The inequality for s; and s
follows similiarly.

Next, we have S, = C,, + %X,X., v = 1,2, and the relation H =

v

HO + tlHo)le{H + tQHOXQXgH. We can write

S1 — So1 = t/N E tr (H()Sl - HCl)
=t/N %] Hyx; — tt; /N E x] HyC1 HX, — tto/N E %3 HoCy HX,.

Here, in the right hand side, the first term is t1®11/N; < 1/Nj.
We reduce the estimation of the second term to the estimation of
two symmetric terms by the Schwarz inequality. Since ¢1[|HCy|| < 1
and t1]|HoC1]| < 1 we can state that the second term is not greater
than tE %2 /N < 7y/Nj. Similiarly, the third term also is not greater
7y/Na. We conclude that |$1 —so1| < 1/N1+7y/N < wyy. The sym-
metric inequality follows from assumptions. Statement 2 is proved.

Now we estimate var (Sp1). We notice that it is not greater than
t2 var [(tr HoS1)/N] which is equal to

t*[E tr (HoS1)/N(x{ Hyx1/N) — E tr [(H¢S1)/N] E x] Hox;/N]
< [var (Sp1) var (twl)]l/Q.
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We have var (591) < var (t31) < § < wgz. The symmetric inequality
also holds. Statement 3 follows.

To prove the fourth statement we notice that ¢ = (1 — t)1) ey
and 1—301 =tE ’(/)1 = tS()lE (p1—tE (plAl, where Al = t(wl—E ¢1)
Using (7) we obtain that E ¢; is equal to

E tr (H}X1)/N =tr (E Ho%y)/N —tE x]{ Hy Y Hyx, /N2

Substitute E Hy from Theorem 3.1. It follows that 1 — sg; is equal
to

tSOl tr (ElRil)/N — t2501E X?H&ElH()Xl/NQ —tE (plAl,

where R = I + t159121 + t25022%2. The first term in the right hand
side is the main term of the fifth statement of the theorem. The
other two terms constitute the correction o;. We find

lo1| < t?|Z1]| E x2/N? +tE x?|A|/N < 72y/N + myV/6.

Since § < wyo we obtain o% < wgq. By symmetry we have 0% < we4.-
Let us prove the last statement of our theorem. Denote y, =
n/N,, v=1,2. Since 5§, > 1 — y,, we have

t12/<1 - yV)QE (\/I}Vl/ - \I]I/V)Q S
S E (]- - /S\V - tugu\IIuV)Q

=E(1-s,—t5%,+t,(s — §,,)Al,]2 +var [5,(14+t,9,,)],
(14)

where A, = V¥, — E V¥,,, v = 1,2. By Theorem 3.3, the first
summand is not greater than 2wr4 + 2t, var ¥, < wgg. The second
summand is not greater than

E(1+ tl,\IJW)Qvar S, +var (t,V,,), v=12.

Here t2E U2 ) < 2E (x2)? < 7242, and by statement 3, var 3, < wya,
v = 1,2. Thus the second summand also is not greater wgg. We
conclude that the left hand side of (14) is not greater than wgg.
Since t,(1 —y,) > t(p —y), v = 1,2, we obtain statement 5. The
proof of Theorem 3.4 is complete. [
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Limit Spectral Functions of the Increasing
Pooled Sample Covariance Matrices

Let us perform the limit transition as n — oco. We consider a
sequence P = {P,,} of problems

ﬁnn == (61,62,21,227N1,N2,%1,:£2,S,O)n, n = 1a27"'a

of the investigation of spectral functions of the pooled sample co-
variance matrices S and C calculated over two samples X; and X,
of sizes N7 and Ny from different populations &; and &, with the
parameters M, «, and covariance matrices 31 and Xy (we do not
write out the subscript n for the arguments of ,,). Assume that for
some c:

A M<c foreach n=12....

B. lim y=0.
C. lim n/N, =X, v=1,2.
D. lim N,/N=m,, v=12.

An additional assumption is required to provide the convergence
of spectral functions. Denote

on(xo, 1, T2) = n~ ' Indet (ol + 1351 + x2309).
Assume that
E. lim ¢, (20, 21,22) = ©n(zo, 21, 22), where the convergence is
n—oo

uniform with respect to zg > 1, 21,22 > 0.
Denote A = A\ A2/(A1 + A2). Under assumptions A-D, for each
t >0, we have y = n/N — A, and wi; = wi(t) — 0 for all k,1 > 0.

Denote the convergence in the square mean by 2.
THEOREM 3.5. Let conditions A-FE be satisfied. If t > 0 and
AL+ A2 < 1 then in {P,,} the convergence holds:
dp(tg, t1,t
Y 30( 0,01, 2)
at,
for t, =tm,si,(t), v=1,2

19 sou(t) — sp,(t) =1

b
to=1

20 t,d,, >1—s,(t), v=12
30 e Ho(t) 2 h*(t), n'tr H(t) — h*(t),
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Op(to, t1,t2)

where h*(t) = 5
0

=1, t,=tms;(t), v=12.

to=1

Proof. We first prove that the sequence {so,(¢)} converges in 3
asn — oo, v=1,2.

Define go, = gov(n) = (1 — sou)/Sow, v = 1,2. Note that sg, >
(14 7y)~t, v=1,2, and (20) implies that

" a@n(17x17m2)

or = t/N tr [ZV(I + t130121 +t280222)71]

Y
= Jov + 0(1)v

where z, = t,So,, v =1,2. Under conditions A-E, y — A and the
functions ¢, (1, 21, 22) converge to ¢(1,z1, x2) uniformly. Since the
partial derivatives of ¢,, of the second order are bounded from above
(by M < ¢), we have

890(17 x1, -TQ)

Jov = At o +0o(1)

(15)
with the same z,, v = 1,2. Since so, > (1 + 7y)~!, to prove the
convergence of sq,, it suffices to show that {gg,(n)} converges as
n — oo, v=1,2. Define Agy, = gon(n+1) —gor(n), v=1,2. Let

us estimate the change of the right hand side of (15) using derivatives
at an intermediate point. We obtain the system of equations

Agoy = a1 Agor + av2Agoz +o(1), v=1,2,
with coefficients that can be written in the form

Aup = /\t@nuuﬂu/(l =+ fu)Qa

where
Prvp = tun Mtr (3, 2,9,%), v,p=1,2,

the matrix Qy = I +¢3171 /(1 +&1) +tXama /(14 &2), the matrix Q9
being defined similarly, and £, are magnitudes between go,(n) and
gov(n+ 1), v = 1,2. To prove the convergence, it suffices to show
that the determinant A,, = (1 —a11)(1 — as2) — a12a91 remains large
enough in absolute value as n — oo. By the Cauchy—Bunyakovskii
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inequality, cpfﬂl < Yn11Pn22, and we find that ajoa9; < ajiage. It
follows that A, > 1 — a1; — ase. But mia;; does not exceed A
multiplied by an expression of the form n='tr [A(A + B)"1A(A +
B)~!], where A and B are symmetric positive semidefinite matrices
(matrix B being non-degenerate). It can be readily seen that this
expression is not greater 1. Therefore, a;; < A1, and similarly, ass <
Ay. We obtain
An Z 1—)\1—)\2+0(1).

The existence of limits of lim sq, = 5§, asn — oo, v =1, 2, is shown.
Now we notice that the arguments z, = t,s0, — tm,s5,, v =1,2,
and (15) gives statement 1 of our theorem. The second statement fol-
lows immediately. We also notice that ho(t) = dpn (o, 1, 22)/0%0,
where g = 1, z, = t,so,, v = 1,2. Since the functions ¢, are
twice differentiable, we can perform the limit transition and obtain
the last statement of our theorem. Theorem 3.5 is proved. [

Example. Let ¥ = X3 = X for n = 1,2,.... We have s*(t) def
sh1(t) = sio(t) and h*(t) —h=Mr (I +ts*(£)X) ™! — 0, where s*(¢) =
1 — A1 — h*(t)) for each ¢ > 0. If the matrices ¥ have a limit
spectrum and all eigenvalues of ¥ are located on a segment [c1, 2],
where ¢; > 0 and ¢y do not depend on n, then the limit spectrum
of matrices S and C exists and, if A < 1, it lies within the segment
(1= VA)er, (1+ V)2,

Now let the matrices X1 and Y5 be of a special form with pairwise
identical eigenvectors e; with different eigenvalues {\;}:

Yie; =die;, Yoe; =0, i=1,...,m,

Yie; =0, Yoe;=dse;, i=m+1,...,n, n=23....

For simplicity let d; and ds do not depend on n and m/n — £y > 0,
B2 =1 — (1. Then the well-known routine of the Stieltjes transform
inversion shows that the limit spectrum of S and C'is located on the
union of segments [a, (1 —vA)?, a,(14++v/X)?], where a, = 8,d,, v =
1,2. Thus we obtain a superposition of two well known ‘semi-circle’
distributions as expected. If a; < ag the inequality aq(1 + ﬁ)Q <
as(1 — v/X)? is necessary and sufficient for the limit spectrum of S
and C to be split into two disconnected parts.



