
CHAPTER III

RESOLVENT AND SPECTRAL

FUNCTIONS OF LARGE POOLED

SAMPLE COVARIANCE MATRICES

The purpose of this chapter is to single out the leading parts
of spectral functions of pooled sample covariance matrices which
present the weighted sums of sample covariance matrices calculated
over samples from different populations. We consider two popula-
tions S1 and S2 without assumptions on distributions having, in
general, different true covariance matrices, and study relations be-
tween leading parts for spectral functions of true covariance matrices
and for pooled sample covariance matrices under high dimension and
large sample sizes. These relations, in particular, can be used for the
improvement of the standard linear discriminant procedure when it
is applied to a wide class of populations.

Problem Setting

Let x = (x1, . . . ,xn) be observation vectors from two populations
S1 and S2. We restrict the populations with an only requirement
that all four moments of all variables exist. For convenience let
E x = 0 in the both populations. Define the parameters

Mν = max
ν

sup
|e|=1

E (eTx)4 for x in Sν , ν = 1, 2.

M = max (M1,M2), (1)

where (and in the following) non-random vectors e are of unit length
(the absolute value of a vector means its length). For simplicity let
M > 0. Denote Σν = cov (x,x) for x in population Sν , ν = 1, 2.
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62 III. SPECTRA OF POOLED COVARIANCE MATRICES

Define

γν = sup
‖Ω‖=1

var (xTΩx/n)/M for x in Sν , ν = 1, 2,

γ = max (γ1, γ2), (2)

where Ω are non-random real symmetric positive semidefinite matri-
ces of unit spectral norm (only the spectral norms of matrices are
used). The values γ measure the variance of quadratic forms and
restrict the dependence of variables (see Introduction).

Let X1 and X2 be two (independent) samples of size N1 > 1 and
N2 > 1 from S1 and S2. Denote N = N1 +N2. Define

x̄ν = N−1
∑

xm∈Xν

xm, Sν = N−1
∑

xm∈Xν

xmxTm,

Cν = N−1
∑

xm∈Xν

(xm − x̄ν)(xm − x̄ν)T ,

where m runs over numbers of all vectors xm from both samples
Xν , ν = 1, 2. We consider pooled sample matrices of two forms

S = (N1S1 +N2S2)/N and C = (N1C1 +N2C2)/N,

the expectation matrix Σ = (N1Σ1 +N2Σ2)/N, and the resolvents

H0 = H0(t) = (I + tS)−1 and H = H(t) = (I + tC)−1, t ≥ 0.

Note that tH0(t) and tH(t) can be considered as regularized ridge
estimators of the matrix Σ−1.

We will be interested in functions

Vν = eTH0x̄ν , Φνµ = x̄TνH0x̄µ, Uν = eTHx̄ν ,

Ψνµ = x̄TνHx̄µ, ν, µ = 1, 2. (3)

We also consider the functions

h0(t) = E n−1tr H0(t), h(t) = E n−1tr H(t),

s0ν = s0ν(t) = 1− t/N E tr (H0(t)Sν),

sν = sν(t) = 1− t/N E tr (H(t)Cν), ν = 1, 2. (4)

For brevity, denote tν = tNν/N, ν = 1, 2, and

y = n/N, τ =
√
Mt, δ = δ(t) = 2τ2y2(γ + τ2/N). (5)
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Spectral Functions of Pooled Random Gram Matrices

The main tool of our proofs will be the method of alternating
elimination of independent variables. For the convenience of nota-
tions, we enumerate sample vectors from both X1 and X2 in such a
way that x1 ∈ X1 and x2 ∈ X2. Denote

Sν = S −N−1xνxTν , Hν
0 = (I + tSν)−1,

ϕν = xTνH
ν
0 xν/N, ψν = xTνH0xν/N, ν = 1, 2. (6)

It is easy to verify the identities

H0 = Hν
0 − tHν

0 xTν xνH0/N, H0xν = (1− tψν)Hν
0 xm,

(1 + tϕν)(1− tψν) = 1, m = 1, 2. (7)

Let e be a non-random unit vector with n components. Denote

vν = vν(t) = eTHν
0 xν , uν = uν(t) = eTH0xν , ν = 1, 2.

From (7) and (1) it is obvious that

uν = (1− tψν)vν , 0 ≤ tψν ≤ 1,

E (1− tψν) = s0ν(t), E v4
ν ≤M, ν = 1, 2. (8)

Theorem 3.1. If t ≥ 0, then

E H0(t) = (I + t1s01Σ1 + t2s02Σ2)−1 + Ω0,

var (eTH0(t)e) ≤ τ2/N. (9)

Proof. We eliminate the vectors xν , ν = 1, 2. By (7),

tνH0xνxTν = tν(1− tψν)Hν
0 xνxTν , ν = 1, 2.

The expectation E H0xνxTν = E H0Sν , ν = 1, 2. Clearly, the sum
t1E H0S1 + t2E H0S2 = I − E H0. On the right hand side we
substitute 1−tψν = s0ν−∆ν , where ∆ν is a deviation of tψν from the
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expectation value, and notice that E Hν
0 xνxν = E Hν

0 Σν , ν = 1, 2.
It follows that

I −E H0 = t1s01E H1
0 Σ1 + t2s02E H2

0 Σ2 + Ω1 + Ω2, (10)

where Ων = −E tνH
ν
0 xνxTν ∆ν , ν = 1, 2. Let us substitute the

expressions for Hν
0 in terms of H0 using the first equation from (7)

with the transposed left and right hand sides, ν = 1, 2. Equation
(10) can be rewritten in the form

I = E H0R+ Ω1 + Ω2 + Ω̃1 + Ω̃2,

where Ω̃ν = ttνs0νN
−1E H0xνxTνH

ν
0 Σν , ν = 1, 2, and R = I +

t1s01Σ1 + t2s02Σ2. We multiply both parts of this equation by
R−1 from the right. It follows that R−1 − E H0 = Ω0, where
Ω0 = (Ω1 +Ω2 +Ω̃1 +Ω̃2)R−1. Let e be the eigenvector for the max-
imum eigenvalue of the symmetric matrix Ω0. Using the Schwarz
inequality, (8) and (1), we find

(eTΩ1e)2 ≤ t21E ∆2
1E |(eTH1

0x1)2(xT1 e)2| ≤Mt2var (tψ1) ≤ τ2δ.

Similiarly, (eTΩ1e)2 ≤ τ2δ. Further, we have

|eT Ω̃1e| ≤ tt1 N−1E |(eTH0x1)(xT1 H
1
0 Σ1e)|.

Here, by (8), |eTH0x1| ≤ |v1|, ‖Σ1‖ ≤
√
M and by (1) the left hand

side is not greater τ2/N . Similiarly, |eT Ω̃2e| ≤ τ2/N . We obtain the
statement of Theorem 3.1. �

Theorem 3.2. If t ≥ 0 then:

1o t (E Vν)2 ≤ ω52, t var Vν ≤ ω20, ν = 1, 2;

2o tνΦνν ≤ 1, tνE Φνν = 1− s0ν + oν , where o2
ν ≤ ω52,

var (tνΦνν) ≤ ω20, ν = 1, 2;

3o var (eTH0e) ≤ τ2;

4o t1t2E Φ12 ≤ o, where o2 ≤ ω52, t2var Φ12 ≤ ω20;

5o s0ν(t) ≥ (1 + τy)−1, ν = 1, 2.
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Proof. First, we notice that S1 = C1 + x̄1x̄T1 and S = A +
t1x̄1x̄T1 , where A is a symmetric positive definite matrix. Denote
y = A−1/2x̄1. Then we can write:

t1Φ11 = t1yT (I + t1yyT )−1y = t1y2(1 + t1y2)−1 ≤ 1.

Similiarly, t2Φ22 ≤ 1.
Now let ν = 1, 2. Obviously, E vν = 0 and E Vν = E uν =

E (1− tψν)vν = −E ∆νvν , where ∆ν is a deviation of tψν from the
expectation value. Using (7) we have

t(E Vν)2 ≤ tE v2
ν var tψν ≤ t

√
M δ = τδ ≤ ω52.

This is the first statement of our theorem.
To estimate var Vν , we use the martingale Lemma 2.2. Let ν = 1.

We eliminate the vector x1. Denote x̃1 = x̄1 − x1/N1, S1 = S −
tx1xT1 /N , and w1 = xT1 H

1
0 x̃1. Then

xT1 H0x̃1(1 + txT1 H
1
0x1/N) = xT1 H

1
0 x̃1 = w1.

It follows that |xT1 H0x̃1| ≤ |w1|. By (1), we have t2t21E w4
1 ≤

Mt2t21E (x̃T1 H
1
0 x̃1)2. The expression in the parenthesis is the func-

tion Φ11 with one vector eliminated. Since t1Φ11 ≤ 1 we conclude
that t2t21E w4

1 ≤ Mt2 = τ2. First, we eliminate the dependence on
x1 ∈ X1 and then on x2 ∈ X2 from V1. Using (7) we have

V1 = eTH0x̄1 = eTH1
0 x̃1 + eTH1

0x1/N − teTH0x1xT1 H
1
0 x̃1/N

= eTH1
0 x̃1 + u1(1/N1 − tw1/N).

On the other hand, V1 = eTH0x̄1 = eTH2
0 x̄1− tu2xT2 H

2
0 x̄1/N . Tak-

ing into account random vectors from both X1 and X2, by Lemma
2.2, we obtain

t var (eTH0x1) ≤ tN1E σ2
1 + tN2E σ2

2 ,

where σ1 = u1(1/N1 − tw1/N), σ2 = u2xT2 H
2
0 x̄1/N . From the in-

equality t1Φ11 ≤ 1 it follows that also t1x̄T1 H
2
0 x̄1 ≤ 1. We obtain

t1E σ2
1 ≤ 2t1E u2

1(N−2
1 + E t2w2

1N
−2) ≤ 4τ(1 + τ)/N2

1 ,
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t2E σ2
2 ≤ t2E u2

2t
2E x̄T1 H

2
0 x̄1/N

2 ≤ τ/NN1.

Using these inequalities, we derive the required inequality for t var
V1. The symmetric estimate for ν = 2 follows from assumptions.
Statement 1 of the theorem is proved.

The first relation of statement 2 can be immediately deduced.
Consider the expectation values. We have

t1E Φ11 = t1E x̄T1 H0x̄1 = t1E xT1 H0x̄1

= t1E xT1 H0x1/N1 + t1E xT1 H0x̃1.

Here the first summand in the right hand side equals the product
tE ψ1 = 1− s01. Using the second equation in (7), we can write the
second summand as E t1xT1 H

1
0 x̃1(1− tψ1). Let us replace the differ-

ence in the parenthesis by 1− tE ψ1 −∆1, where ∆1 is a deviation
of tψ1 from its expectation. The contribution of the constant part
of 1− tψ1 vanish. Since t1Φ11 ≤ 1, by eliminating the vector x1, we
obtain that t1(x̃T1 H0x̃1) ≤ 1 and

t1|E xT1 H0x̃1∆1| ≤ [t21 E (xT1 H
1
0 x̃1)2 var tψ1]1/2

≤ [
√
M E t21(x̃T1 H

1
0 x̃1)δ]1/2 ≤

√
τδ ≤ √ω52.

To estimate var Φ11, we again use Lemma 2.2. Let us eliminate
the vector x1. We can rewrite Φ11 = x̄T1 H0x̄1 in the form

x̃T1 H
1
0 x̃1 + 2x̃T1 H0x1/N1 + xT1 H0x1/N

2
1 − tx̃T1 H0x1 xT1 H

1
0 x̃1/N1,

where x̃1 = x̄1−x1/N1. On the other hand, excluding x2, we obtain

Φ11 = x̄T1 H
2
0 x̄1 − tx̄T1 H0x2xT2 H

2
0 x̄1/N.

By Lemma 2.2 we have var Φ11 ≤ N1E σ2
1 + N2E σ2

2 , where σ1 is
the sum of the last three summands of the first expression, and σ2

is the last summand of the second expression for Φ11. Using (7) and
(1), we obtain that t1x̃T1 H0x̃1 ≤ 1 and

t21E (xT1 H0x̃1)2 ≤ t21E (xT1 H
1
0 x̃1)2 ≤

√
M t21 E x̃T1 H

12
0 x̃1 ≤ τ,

t21(xT1 H0x1)2/N2 = t21ψ
2
1 ≤ 1,

t2t21E (x̃T1 H0x1xT1 H
1
0 x̃1)2 ≤ t2t21E (x̃T1 H

1
0x1)4 ≤ τ2t2E w4

1 ≤ τ2,
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where the second superscript denotes the square. If we put x2 = 0,
then the relation t1Φ11 ≤ 1 implies t1x̄T1 H

2
0 x̄1 ≤ 1. Hence,

t2t21E (x̄T1 H0x2xT2 H
2
0 x̄1)2 ≤ t2t21E (x̄T1 H

2
0x2)4

≤ τ2t21E (x̄T1 H
22
0 x̄1)2 ≤ τ2.

Substituting these inequalities, we obtain the inequality t1var Φ11 ≤
a(1+τ2)/N1 ≤ ω20, where a is a numerical constant. The symmetric
relation for ν = 2 follows from assumptions. Statement 2 is proved.

To prove statement 3 it suffices to repeat the arguments used in
the proof of Lemma 2.3 with our resolvent H0.

Further, from definition of Φ21 it follows that

tE Φ21 = tE x̄T2 H0x1 = tE x̄T2 H
1
0x1(1− tψ1) = −tE x̄T2 H

1
0x1∆1,

where ∆1 is t(ψ1 − E ψ1). Estimating the right hand side by the
Schwarz inequality and using (1) we obtain

(E Φ12)2 ≤ δE (x̄T1 H
1
0 x̄2)2 ≤ δE (x̄T2 H

12
0 x̄2)

√
M.

Here ‖H12
0 ‖ ≤ ‖H1

0‖, and the expression in the parenthesis is not
greater Φ22 with x1 = 0. Since t2Φ22 ≤ 1 , we can conclude that
t1t2(E Φ21)2 ≤ τδ ≤ ω52.

To estimate the variance of Φ21 we rewrite this value in the form

Φ12 = x̄T1 H0x̄2 = x̃T1 H
1
0x2 + xT1 H0x̄2/N1 − tx̃T1 H1

0x1 xT1 H0x̄2/N2,

where the first summand does not depend on x1. Using Lemma 2.2
we can state that var Φ12 ≤ N1E σ2

1 +N2E σ2
2 , where σ1 is the sum

of the last two terms and σ2 is a symmetric expression. Using (7)
we obtain

E σ2
1 ≤ [E (xT1 H0x̄2)4E (1/N1 − tx̃T1 H1

0x1/N)4]1/2,

t2t22E (xT1 H0x̄2)4 ≤ t2t22E (xT1 H
1
0 x̄2)4 ≤Mt2t22E (x̄T2 H

1
0 x̄2)2 ≤ τ2,

and
t2t21E (x̃T1 H

1
0x1)4 ≤Mt2t21E (x̃TH12

0 x̃1)2 ≤ τ2,
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where the second superscript 2 means the square. From these in-
equalities it follows that N1E σ2

1 ≤ 3τ(1/N1 +τ/N1). The symmetric
statement follows from assumptions. Combining these we obtain the
inequality t2var Φ12 ≤ 3τ(1 + τ)/N0 ≤ ω20. Statement 4 is proved.

Now define ϕ11 = x1H
1
0x1/N , ψ11 = x1H0x1/N . Using (7), we

find that s01(t) equals

1−E tr H0S1/N = 1− tE ψ11 = E (1 + tϕ11) ≥ (1 + tE ϕ11)−1.

Here tE ϕ11 ≤ tE x2
1/N ≤ τy. The symmetric inequality for s02

follows from assumptions. We obtain the last statement. Theorem
3.2 is proved. �

Spectral Functions of Pooled Sample Covariance Matrices

Theorem 3.3. If t ≥ 0, N1 > 1 and N2 > 1 then:

1o t E U2
ν ≤ ω85, ν = 1, 2;

2o E ‖H(t)−H0(t)‖2 ≤ ω63;

3o E H(t) = (I + t1s01(t)Σ1 + t2s02(t)Σ2)−1 + Ω, ‖Ω‖2 ≤ ω63;

var (eTH(t)e) ≤ aτ2/N, where a is a numerical coefficient;

4o tνs0νE Ψνν = 1− s0ν + oν , o2
ν ≤ ω74;

t2νvar Ψνν ≤ ω96, ν = 1, 2;

5o t1t2E Ψ2
12 ≤ ω96.

Proof. We start from the identities

H = H0 + t1Hx̄1x̄T1 H0 + t2Hx̄2x̄T2 H0,

U1 = V1 + t1U1Φ11 + t2U2Φ12,

Ψ11 = Φ11 + t1Ψ11Φ11 + t2Ψ12Φ21,

Ψ12 = Φ12 + t1Ψ11Φ12 + t2Ψ12Φ22. (11)

Using the relation 1− t1Φ11 = s01 − o1 from Theorem 3.2, we have

s01U1 = V1 − U1o1 + t2U2Φ21.
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We square the both parts of this equation, multiply by t1 and calcu-
late the expectation. Using the Schwarz inequality we obtain

t1s
2
01(E U1)2/3 ≤ t1(E V1)2 + t1E U2

1 o
2
1 + t2E U2

2 t1t2E Φ2
21. (12)

Here, by Theorem 3.2, the first summand is not greater ω52. In the
second summand, t1E U2

1 ≤ t1E x̄2
1 ≤ t1

√
M n/N1 = τy, o2

1 ≤ ω52.
In the third summand, t2E U2

2 ≤ τy, and by Theorem 3.2, we have
t1t2E Φ2

21 ≤ ω52. Thus the right hand side of (12) is not greater
ω63. But s01 ≥ 1 + τy. It follows that t1(E U1)2 ≤ ω85. The similiar
estimate for ν = 2 follows from assumptions. Statement 1 is proved.

Further, by (11), for any non-random vector e of unit length
eTH0e− eTHe = t1U1V1 + t2U2V2, and consequently

‖E H0 −E H‖2 ≤ 2E t1U
2
1 E t1V

2
1 + 2E t2U

2
2 E t2V

2
2 .

But tνUνν ≤ 1, ν = 1, 2. From Theorem 3.2, statement 2 follows.
Consider the expectation in the formulation of statement 3. We

have
E H = (I + t1s01Σ1 + t2s02Σ2)−1 + Ω,

where Ω = Ω0+EH−EH0. By Theorem 3.2, we obtain ‖Ω‖2 ≤ ω63.
To estimate the variance of eTHe, we apply Lemma 2.2. Let

us eliminate vectors x1 ∈ X1 and x2 ∈ X2. Define Cν = C −
xνxTν /N + x̄xν/N + xν x̄/N , which does not depend on xν , ν = 1, 2.
Let Hν = (I + tCν)−1, ν = 1, 2. Then

Hν = H−tHνxνxνH(1+1/N)/N+tHν x̄νxTνH/N+tHνxν x̄TνH/N,

ν = 1, 2. We apply Lemma 2.2 eliminating the dependence first on
x1 and then on x2. We obtain

var (eTHe) ≤ at2N−2
∑
ν=1,2

E [(eTHνxν)2(xTνHe)2

+ (eTHνxν)2(x̄TνHe)2 + (eTHν x̄ν)2(x̄TνHe)2].

where a is a number. Here |eTHxν | ≤ |eTHνxν |, E (eTHνxν)4 ≤
M , and E x̄2

ν ≤
√
My, ν = 1, 2. Using this relation we obtain

var (eTHe) ≤ aτ2/N . Statement 3 is proved.
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Further, we start from (11). Substituting 1 − t1Φ11 by Theorem
3.2, we find

s01Ψ11 = Φ11 + Ψ11∆1 + t2Ψ12Φ21, (13)

where ∆1 = t1(Φ11 − E Φ11). Let us multiply the left hand side by
t1 and calculate the expectation value. Using the Schwarz inequality
we obtain the relation t1s01E Ψ11 = 1− s01 + o, where

o2/3 ≤ ω52 + t21E Ψ2
11var (t1Φ11) + t1t2E Φ2

12t1t2E Ψ2
12.

Here t21E Ψ11 ≤ t21E (x̄2
1)2 ≤ Mt21y

2
1 = τ2y2. By Theorem 3.2, we

have that t1t2E Φ2
12 ≤ ω52 and t1t2E Ψ2

12 ≤ t1t2E x̄2
1x̄

2
2 ≤ τ2y2. We

conclude that o2 ≤ ω74. The symmetric statement for Ψ22 follows
from assumptions.

To estimate the variance of Ψ11 we also start from (11). It suffices
to estimate variances of the summands. Multiplying by t1 and using
the Schwarz inequality and the equality t1t2Φ12 ≤ 1, we obtain that
s2

01var (t1Ψ11)/3 is not larger than

var (t1Φ11) + E (t1Ψ11)2var (t1Φ11) + t1t2E Φ2
12 t1t2E Ψ2

12.

Here, in the right hand side,

E (t1Ψ11)2 ≤ t21E (x̄2
1)2 ≤ τ2y2,

E t1t2Ψ2
12 ≤ t1t2E x̄2

1x̄
2
2 ≤ τ2y2.

Using Theorem 3.2, we find that the right hand side is not greater
ω74. Since s01 ≥ 1 + τy, the second part of statement 4 follows.

Further, (11) implies that s02Ψ12 = Φ12 + Ψ12∆2 + t1Ψ11Φ12,
where ∆2 = t2(Φ22 −E Φ22). We square both parts of this equality
and multiply by t1t2. It follows that s2

02t1t2E Ψ2
12/3 is not greater

than

t1t2E Φ2
12 + t1t2E Ψ2

12 var (t2Φ22) + t21E Ψ2
11 t1t2E Φ2

12.

Here the first summand does not exceed ω52; in the second summand
t1t2E Ψ2

12 ≤ τ2y2, var t2Φ22 ≤ ω20, and in the third summand we
have t21E Ψ2

11 ≤ τ2y2. We obtain ω74 in the right hand side. Taking
into account that s01 ≥ 1 + τy, we come to statement 5. The proof
of Theorem 3.3 is complete. �
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We now find the relations between s0ν and sν and consider the
unbiased estimators of these. Define

ŝ0ν = ŝ0ν(t) = 1− t/N tr H0Sν , ŝν = ŝν(t) = 1− t/N tr HCν ,

Ψ̂νν = (1− ŝν)/(tν ŝν), ν = 1, 2.

Theorem 3.4. If t ≥ 0, then for ν = 1, 2:

1o ŝ0ν(t) ≥ 1− n/Nν , ŝν(t) ≥ 1− n/Nν ;

2o E |ŝν(t)− s0ν |2 ≤ ω11;

3o E |ŝ0ν(t)− s0ν(t)|2 ≤ δ ≤ ω42;

4o 1− s0ν(t)

= t/N s0ν(t) tr [Σν(I + t1s01(t)Σ1 + t2s02(t)Σ2)−1 + oν ,

where o2
ν ≤ ω64;

5o t2(1− y)2E (Ψ̂νν −Ψνν)2 ≤ ω96.

Proof. We note that tν/N tr (H0Sν) = 1/Ntr (I − t2H0Sν) ≤ y.
Obviously, ŝ0ν ≥ 1 − n/Nν , ν = 1, 2. The inequality for s1 and s2

follows similiarly.
Next, we have Sν = Cν + x̄ν x̄Tν , ν = 1, 2, and the relation H =

H0 + t1H0x̄1x̄T1 H + t2H0x̄2x̄T2 H. We can write

s1 − s01 = t/N E tr (H0S1 −HC1)

= t/N x̄T1 H0x̄1 − tt1/N E x̄T1 H0C1Hx̄1 − tt2/N E x̄T2 H0C1Hx̄2.

Here, in the right hand side, the first term is t1Φ11/N1 ≤ 1/N1.
We reduce the estimation of the second term to the estimation of
two symmetric terms by the Schwarz inequality. Since t1‖HC1‖ ≤ 1
and t1‖H0C1‖ ≤ 1 we can state that the second term is not greater
than tE x̄2

1/N ≤ τy/N1. Similiarly, the third term also is not greater
τy/N2. We conclude that |ŝ1−s01| ≤ 1/N1 +τy/N ≤ ω11. The sym-
metric inequality follows from assumptions. Statement 2 is proved.

Now we estimate var (ŝ01). We notice that it is not greater than
t2 var [(tr H0S1)/N ] which is equal to

t2[E tr (H0S1)/N(xT1 H0x1/N)−E tr [(H0S1)/N ] E xT1 H0x1/N ]

≤ [var (ŝ01) var (tψ1)]1/2.
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We have var (ŝ01) ≤ var (tψ1) ≤ δ ≤ ω42. The symmetric inequality
also holds. Statement 3 follows.

To prove the fourth statement we notice that ψ1 = (1 − tψ1)ϕ1

and 1−s01 = tE ψ1 = ts01E ϕ1−tE ϕ1∆1, where ∆1 = t(ψ1−E ψ1).
Using (7) we obtain that E ϕ1 is equal to

E tr (H1
0 Σ1)/N = tr (E H0Σ1)/N − tE xT1 H

1
0 Σ1H

1
0x1/N

2.

Substitute E H0 from Theorem 3.1. It follows that 1− s01 is equal
to

ts01 tr (Σ1R
−1)/N − t2s01E xT1 H

1
0 Σ1H0x1/N

2 − tE ϕ1∆1,

where R = I + t1s01Σ1 + t2s02Σ2. The first term in the right hand
side is the main term of the fifth statement of the theorem. The
other two terms constitute the correction o1. We find

|o1| ≤ t2‖Σ1‖ E x2
1/N

2 + tE x2
1|∆1|/N ≤ τ2y/N + τy

√
δ.

Since δ ≤ ω42 we obtain o2
1 ≤ ω64. By symmetry we have o2

2 ≤ ω64.
Let us prove the last statement of our theorem. Denote yν =

n/Nν , ν = 1, 2. Since ŝν ≥ 1− yν we have

t2ν(1− yν)2E (Ψ̂νν −Ψνν)2 ≤
≤ E (1− ŝν − tν ŝνΨνν)2

= [E (1− sν − tνsνΨνν + tν(sν − ŝν)∆ν ]2 + var [ŝν(1 + tνΨνν)],
(14)

where ∆ν = Ψνν − E Ψνν , ν = 1, 2. By Theorem 3.3, the first
summand is not greater than 2ω74 + 2tν var Ψνν ≤ ω96. The second
summand is not greater than

E (1 + tνΨνν)2var ŝν + var (tνΨνν), ν = 1, 2.

Here t2νE Ψ2
νν ≤ t2νE (x̄2

ν)2 ≤ τ2y2, and by statement 3, var ŝν ≤ ω42,
ν = 1, 2. Thus the second summand also is not greater ω96. We
conclude that the left hand side of (14) is not greater than ω96.
Since tν(1 − yν) ≥ t(ρ − y), ν = 1, 2, we obtain statement 5. The
proof of Theorem 3.4 is complete. �
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Limit Spectral Functions of the Increasing
Pooled Sample Covariance Matrices

Let us perform the limit transition as n → ∞. We consider a
sequence P = {Pn} of problems

Pn = (S1,S2,Σ1,Σ2, N1, N2,X1,X2, S, C)n, n = 1, 2, . . . ,

of the investigation of spectral functions of the pooled sample co-
variance matrices S and C calculated over two samples X1 and X2

of sizes N1 and N2 from different populations S1 and S2 with the
parameters M, γ, and covariance matrices Σ1 and Σ2 (we do not
write out the subscript n for the arguments of Pn). Assume that for
some c:

A. M < c for each n = 1, 2, . . . .
B. lim

n→∞
γ = 0.

C. lim
n→∞

n/Nν = λν , ν = 1, 2.

D. lim
n→∞

Nν/N = πν , ν = 1, 2.
An additional assumption is required to provide the convergence

of spectral functions. Denote

ϕn(x0, x1, x2) = n−1 ln det (x0I + x1Σ1 + x2Σ2).

Assume that
E. lim

n→∞
ϕn(x0, x1, x2) = ϕn(x0, x1, x2), where the convergence is

uniform with respect to x0 ≥ 1, x1, x2 ≥ 0.
Denote λ = λ1λ2/(λ1 + λ2). Under assumptions A-D, for each

t ≥ 0, we have y = n/N → λ, and ωkl = ωkl(t) → 0 for all k, l ≥ 0.
Denote the convergence in the square mean by 2→ .

Theorem 3.5. Let conditions A-E be satisfied. If t ≥ 0 and
λ1 + λ2 < 1 then in {Pn} the convergence holds:

1o s0ν(t)→ s∗0ν(t) = 1− tλ∂ϕ(t0, t1, t2)
∂tν

∣∣∣∣
t0=1

,

for tν = tπνs
∗
0ν(t), ν = 1, 2;

2o tνΦνν
2→ 1− s∗0ν(t), ν = 1, 2;

3o n−1tr H0(t) 2→ h∗(t), n−1tr H(t)→ h∗(t),
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where h∗(t) =
∂ϕ(t0, t1, t2)

∂t0

∣∣∣∣
t0=1

= 1, tν = tπνs
∗
0ν(t), ν = 1, 2.

Proof. We first prove that the sequence {s0ν(t)} converges in P
as n→∞, ν = 1, 2.

Define g0ν = g0ν(n) = (1 − s0ν)/s0ν , ν = 1, 2. Note that s0ν ≥
(1 + τy)−1, ν = 1, 2, and (20) implies that

yt
∂ϕn(1, x1, x2)

∂xν
= t/N tr [Σν(I + t1s01Σ1 + t2s02Σ2)−1]

= g0ν + o(1),

where xν = tνs0ν , ν = 1, 2. Under conditions A-E, y → λ and the
functions ϕn(1, x1, x2) converge to ϕ(1, x1, x2) uniformly. Since the
partial derivatives of ϕn of the second order are bounded from above
(by M < c), we have

g0ν = λt
∂ϕ(1, x1, x2)

∂xν
+ o(1) (15)

with the same xν , ν = 1, 2. Since s0ν ≥ (1 + τy)−1, to prove the
convergence of s0ν , it suffices to show that {g0ν(n)} converges as
n→∞, ν = 1, 2. Define ∆g0ν = g0ν(n+ 1)− g0ν(n), ν = 1, 2. Let
us estimate the change of the right hand side of (15) using derivatives
at an intermediate point. We obtain the system of equations

∆g0ν = aν1∆g01 + aν2∆g02 + o(1), ν = 1, 2,

with coefficients that can be written in the form

aνµ = λtϕnνµπµ/(1 + ξµ)2,

where
ϕnνµ = tµn

−1tr (Σν ΣµΩ−2
µ ), ν, µ = 1, 2,

the matrix Ω1 = I + tΣ1π1/(1 + ξ1) + tΣ2π2/(1 + ξ2), the matrix Ω2

being defined similarly, and ξν are magnitudes between g0ν(n) and
g0ν(n + 1), ν = 1, 2. To prove the convergence, it suffices to show
that the determinant ∆n = (1− a11)(1− a22)− a12a21 remains large
enough in absolute value as n → ∞. By the Cauchy–Bunyakovskii
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inequality, ϕ2
n11 ≤ ϕn11ϕn22, and we find that a12a21 ≤ a11a22. It

follows that ∆n ≥ 1 − a11 − a22. But π1a11 does not exceed λ
multiplied by an expression of the form n−1tr [A(A + B)−1A(A +
B)−1], where A and B are symmetric positive semidefinite matrices
(matrix B being non-degenerate). It can be readily seen that this
expression is not greater 1. Therefore, a11 ≤ λ1, and similarly, a22 ≤
λ2. We obtain

∆n ≥ 1− λ1 − λ2 + o(1).

The existence of limits of lim s0ν = s∗0ν as n→∞, ν = 1, 2, is shown.
Now we notice that the arguments xν = tνs0ν → tπνs

∗
0ν , ν = 1, 2,

and (15) gives statement 1 of our theorem. The second statement fol-
lows immediately. We also notice that h0(t) = ∂ϕn(x0, x1, x2)/∂x0,
where x0 = 1, xν = tνs0ν , ν = 1, 2. Since the functions ϕn are
twice differentiable, we can perform the limit transition and obtain
the last statement of our theorem. Theorem 3.5 is proved. �

Example. Let Σ1 = Σ2 = Σ for n = 1, 2, . . . . We have s∗(t) def=
s∗01(t) = s∗02(t) and h∗(t)−h−1tr (I+ ts∗(t)Σ)−1 → 0, where s∗(t) =
1 − λ(1 − h∗(t)) for each t ≥ 0. If the matrices Σ have a limit
spectrum and all eigenvalues of Σ are located on a segment [c1, c2],
where c1 > 0 and c2 do not depend on n, then the limit spectrum
of matrices S and C exists and, if λ < 1, it lies within the segment
[(1−

√
λ)2c1, (1 +

√
λ)2c2].

Now let the matrices Σ1 and Σ2 be of a special form with pairwise
identical eigenvectors ei with different eigenvalues {λi}:

Σ1ei = d1ei, Σ2ei = 0, i = 1, . . . ,m,
Σ1ei = 0, Σ2ei = d2ei, i = m+ 1, . . . , n, n = 2, 3 . . . .

For simplicity let d1 and d2 do not depend on n and m/n→ β1 > 0,
β2 = 1− β1. Then the well-known routine of the Stieltjes transform
inversion shows that the limit spectrum of S and C is located on the
union of segments [aν(1−

√
λ)2, aν(1+

√
λ)2], where aν = βνdν , ν =

1, 2. Thus we obtain a superposition of two well known ‘semi-circle’
distributions as expected. If a1 < a2 the inequality a1(1 +

√
λ)2 <

a2(1 −
√
λ)2 is necessary and sufficient for the limit spectrum of S

and C to be split into two disconnected parts.


