
CHAPTER I

INTRODUCTION

THE DEVELOPMENT OF MULTIPARAMETRIC STATISTICS

Today the humanity developed facilities to create and analyze in-
formational models of high complexity including models of biosystems,
visual patterns, and of natural language. Modern computers easily treat
information arrays that are comparable with the total life experience
(near 1010 bits). Now objects of statistical investigation are often char-
acterized by very large number of parameters whereas, in practice, sam-
ple data are rather restricted. For such statistical problems, values of
separate parameters are usually of a small interest, and the purpose of
investigation is displaced to finding optimal statistical decisions.

Some examples.
1. Statistical analysis of biological and economic objects.
These objects are characteristic by a great complexity and a consid-

erable nuisance along with bounded samples. Their models depend on a
great number of parameters, and the standard approach of mathemat-
ical statistics based on expansion in the inverse powers of sample size
does not account for the problem specificity. In this situation, another
approach proposed by A.N.Kolmogorov seems to be more appropriate.
He introduced an asymptotics in which the dimension n tends to infin-
ity along with sample size N allowing to analyze effects of inaccuracies
accumulation in estimating a great number of parameters.

2. Pattern recognition.
Today we must acknowledge that the recognition of biological and eco-

nomic objects requires not so much data accumulation, as the extraction
of regularities and elements of structure against the noise background.
These structure elements are then used as features for recognition. But
the variety of possible structure elements is measured by combinatorial
large numbers and the new mathematical problem arises of efficient dis-
criminant analysis in space of high dimension.
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2 I. INTRODUCTION

3. Interface with computer using natural language.
This problem seems to become the central problem of our age. It is

well known that the printed matter containing the main part of classi-
cal literature requires rather moderate computer resources. For exam-
ple, a full collection of A.S.Pushkin’s compositions occupies only 2–5
megabytes, while the main corpus of Russian literature can be written
on one gigabyte disk. The principle problem to be solved is how to ex-
tract the meaning from the text. Identifying the meaning of texts with
new information and measuring it with the Shannon measure, we can
associate the sense of a phrase with the statistics of repeating words and
phrases in the language experience of a human. This sets a problem of
developing a technology of search for repeating fragments in texts of a
large volume. A specific difficulty is that the number of repetitions may
be far from numerous: indeed, the human mind would not miss even a
single coincidence of phrases.

Traditionally, the statistical investigation is related to a cognition pro-
cess, and according to the R.Fisher conception, the purpose of statistical
analysis is to determine parameters of an object in the process of ana-
lyzing more and more data. This conception is formalized in the form
of an asymptotics of sample size increasing indefinitely which lays in the
foundation of well-developed theory of asymptotic methods of statis-
tics. The most part of investigation in mathematical statistics deal with
one-dimensional observations and fixed number of parameters under ar-
bitrarily large sample sizes. The usual extension to many-dimensional
case is reduced to the replacement of scalars by vectors and matrices and
to studying formal relations with no insight to underlying phenomena.

The main problem of mathematical statistics today remains to study
the consistency of estimators and their asymptotic properties under in-
creasing sample size. Until recently no fruitful approach existed to the
problem of quality estimation of the statistical procedures under fixed
samples. It was only established that nearly all popular statistical meth-
ods allow improvement and must be classified as inadmissible. In many-
dimensional statistics this conclusion is much more severe: nearly all
consistent multivariate linear procedures may have infinitely large values
of risk function. These estimators should be called ”essentially inadmis-
sible”.

Meanwhile, we must acknowledge that today the state of methods
of multivariate statistical analysis is far from satisfactory. Most popular
linear procedures require the inversion of covariance matrix. True inverse
covariance matrices are replaced by consistent estimators. But sample
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covariance matrices (dependently on data) may be degenerate and their
inversion can be impossible (even for the dimension 2). For large dimen-
sion the inversion of sample covariance becomes unstable and that leads
to insignificant statistical inferences of no significance. If the dimension
is larger than sample size, sample covariance matrices are surely degen-
erate and their inversion is impossible. As a consequence, standard con-
sistent procedures of multivariate statistical analysis included into most
of packages of statistical software do not guarantee neither stable, nor
statistically significant results, and often prove to be inapplicable. Com-
mon researchers applying methods of multivariate statistical analysis to
their concrete problems are left without theoretical support in front of
their difficulties. The existing theory cannot recommend them nothing
better as to ignore a part of data artificially reducing the dimension in
hope that this would provide a plausible solution (see [3]).

This book presents the development of a new special branch of math-
ematical statistics applicable to the case when the number of unknown
parameters is large. Fortunately, in case of a large number of bound-
edly dependent variables it proves to be possible to use specifically
many-parametric regularities for the construction of improved proce-
dures. These regularities include small variance of standard quality
functions, the possibility to estimate them reliably from sample data,
to compare statistical procedures by their efficiency and choose better
ones. Mathematical theory developed in this book offers a number of
more powerful versions of most usable statistical procedures providing
solutions that are both reliable and approximately unimprovable in the
situation when the dimension of data is comparable in magnitude with
sample. The statistical analysis appropriate for this situation may be
qualified as the essentially multivariate analysis [69]. The theory that
takes into account effects produced by the estimation of a large number
of unknown parameters may be called the multiparametric statistics.
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The first discovery of the existence of specific phenomena arising in
multiparametric statistical problems was the fact that standard sample
mean estimator proves to be inadmissible, that is, its square risk can be
diminished.

The Stein Effect

In 1956 C.Stein noticed that sample mean is not a minimum square
risk estimator, and it can be improved by multiplying by a scalar de-
creasing the length of the estimation vector. This procedure was called
”shrinkage”, and such estimators were called ”shrinkage estimators”.
The effect of improving estimators by shrinkage was called the ”Stein
effect”. This effect was fruitfully exploited in applications (see [29], [33],
[34]). Let us cite the well-known theorem by James and Stein.

Denote by x be an n-dimensional observation vector, and let x̄ denote
sample mean calculated over a sample of sizeN . Denote (here and below)
by I the identity matrix.

Proposition 1. For n > 2 and x ∼ N(~µ, I), the estimator

µ̂JS =
(

1− n− 2
N x̄2

)
x̄ (1)

has the quadratic risk

E (~µ− µ̂JS)2 = E (~µ− x̄)2 −
(
n− 2
N

)2

E
1
x̄2
. (2)

(here and in the following, squares of vectors denote squares of their
length).

Proof. Indeed,

RJS = E (~µ− µ̂JS)2 = y + 2y2 E
(~µ− x̄)T x̄

x̄2
+ y2

2 E
1
x̄2
, (3)

where y = n/N and y2 = (n − 2)/N . Let f be the normal distribution
density for N(~µ, I/N). Then ~µ− x̄ = (Nf)−1∇f , where ∇ is the differ-
entiation operator in components of x̄. Substitute this expression in the
second addend of (3) and note that the expectation can be calculated
by the integration in f dx̄. Integrating by parts we obtain (2). �

The James–Stein estimator is known as a ”remarkable example of
estimator inadmissibility”.
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This discovery produced the development of a new direction of in-
vestigation and a new trend in theoretical and applied statistics with
hundreds of publications and effective applications [33].

In subsequent years other versions of estimators were offered that im-
proved as standard sample mean estimator as the James–Stein estimator.
The first improvement was offered in 1963 by Baranchik [10]. He proved
that the quadratic risk of the James–Stein estimator can be decreased
by excluding negative values of the shrinkage estimator (”positive-part
shrinkage”). Other numerous shrinkage estimators were proposed sub-
sequently decreasing the quadratic risk one after the other (see [31]).

However, the James–Stein estimator is singular for small x̄2. In 1999
Das Gupta and Singh [30] offered a robust estimator

µ̂G =
(

1− n

n+ x̄2

)
x̄,

that for n ≥ 4 dominates µ̂ = x̄ with respect to the quadratic risk and
dominates µ̂JS with respect to the absolute risk E |~µ− µ̂G| (here and in
the following the absolute value of a vector denote its length). In 1964
C.Stein suggested an improved estimator for x ∼ N(~µ, dI) with unknown
~µ and d. Later a series of estimators were proposed subsequently im-
proving his estimator (see [42]). A number of shrinkage estimators were
proposed for the case N(~µ,Σ) (see [49]).

The shrinkage was also applied in the interval estimation. Using
shrinkage estimator, Cohen [15] has constructed confidence intervals that
have the same length but are different by a uniformly greater probabil-
ity of covering. Goutis and Gasela [27] proposed other confidence in-
tervals improved with respect to the interval length and with respect to
the covering probability as well. These results were extended to many-
dimensional normal distributions with unknown expectations and un-
known covariance matrix.

The Stein effect was discovered also for distributions different from
normal. In 1979 Brandwein has shown that for spherically symmetrical
distributions with the density f(|x− θ|), where θ is a vector parameter,
for n > 3 the estimator µ̂ = (1 − a/x̄2) x̄ dominates µ̂ = x̄ for a such
that 0 < a < amax. For these distributions other improved shrinkage
estimators were found (see the review by Brandwein and Strawdermann
[13]).

For the Poisson distribution of independent integer-valued variables
ki, i = 1, 2, . . . , n with the vector parameter λ = (λ1, λ2, . . . , λn), the
standard unbiased estimator is the vector of rates (f1, f2, . . . , fn) of
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events number i = 1, 2, . . . , n in the sample. Clevenson and Zedek [14]
showed that the estimator λ̂ of the form

λ̂i =
(

1− a

a+ s

)
fi, i = 1, 2, . . . , n where s =

n∑

i=1

fi (4)

for n > 2 has the quadratic risk less than the vector (f1, f2, . . . , fn), if
n− 1 ≤ a ≤ 2 (n− 1). A series of estimators were found improving the
estimator (4).

Statistical meaning of shrinkage.
For the understanding of the mechanism of risk reduction it is useful

to consider the expectation of the sample average square. For distribu-
tions with the variance d of all variables we have E x̄2 = ~µ2 + yd > ~µ2,
where y = n/N , and, naturally, one can expect that shrinkage of sample
average vectors may be useful. The shrinkage effect may be character-
ized by the magnitude of the ratio ~µ2/yd. This ratio may be interpreted
as the ”signal-to-noise” ratio. The shrinkage is purposeful for sufficiently
small ~µ2/yd. For d = 1 and restricted dimension, y ≈ 1/N , and shrink-
age is useful only for the vector length less than 1/

√
N. For essentially

many-dimensional statistical problems with y ≈ 1, the shrinkage can be
useful only for bounded vector length when ~µ2 ≈ 1, and its components
have the order of magnitude 1/

√
N . This situation is characteristic for

a number of statistical problems, in which vectors ~µ are located in a
bounded region. The important example of these is high-dimensional
discriminant analysis in the case when the success can be achieved only
by taking account of a large number of weakly discriminating variables.

Let it be known a priori that the vector ~µ is such that ~µ2 ≤ c. In
this case it is plausible to use the shrinkage estimator µ̂ = αx̄ with the
shrinkage coefficient α = c/(c+ y). The quadratic risk

R(a) = E (~µ− ax̄)2 = y
~µ2y + c2

(c+ y)2
≤ y c

c+ y
< R(1).

It is instructive to consider the shrinkage effect for simplest shrinkage
with non-random shrinkage coefficients. Let µ̂ = αx̄, where non-random
positive α < 1. For x ∼ N(~µ, I), the quadratic risk of this ”a priori”
estimator is

R = R(α) = (1− α)2~µ2 + α2y, (5)

y = n/N . The minimum of R(α) is achieved for α = α0 = ~µ2/(~µ2 + y)
and is equal to

R0 = R(α0) = y~µ2/(~µ2 + y). (6)
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Thus the standard quadratic risk y is multiplied by the factor
~µ2/(~µ2 +y) < 1. In traditional applications, if the dimension is not high,
the ratio y is of order of magnitude 1/N , and the shrinkage effect proves
to be insignificant even for a priori bounded localization of parameters.
However, if the accuracy of measurements is low and the variance of
variables is so large that it is comparable with N , the shrinkage can
considerably reduce the quadratic risk.

The shrinkage ”pulls” estimators down to the coordinate origin; this
means that the shrinkage estimators are not translation invariant. The
question arises of their sensitivity to the choice of coordinate system
and of the origin. In an abstract setting, it is quite not clear how to
choose the coordinate center for ”pulling” of estimators. The center
of many-dimensional population may be located, generally speaking, at
any faraway point of space and the shrinkage may be quite not efficient.
However, in practical problems, some restrictions always exist on the
region of parameter localization and there is some information on the
central point. As a rule, the practical investigator knows in advance the
region of the parameters localization. In view of this, it is quite obvious
that the standard sample mean estimator must be improvable, and it
may be improved, in particular, by shrinkage. Note that this reasoning
has not attracted a worthy attention of researches as yet and this fact
leads to the mass usage of the standard estimator in problems, where
the quality of estimation could be obviously improved.

It is natural to expect that as much as the shrinkage coefficient in the
James–Stein estimator is random, it can decrease the quadratic risk less
efficiently than the best non-random shrinkage. Compare the quadratic
risk RJS of the James–Stein estimator (2) with the quadratic risk R0 of
the best a priori estimator (6).

Proposition 2. For n-dimensional observations x ∼ N(~µ, I) with
n > 2 we have

RJS ≤ R0 + 4
n− 1
N2

1
~µ2 + y

≤ R0 + 4/N.

Proof. We start from Proposition 1. Denote y2 = (n − 1)/N. Using
the properties of moments of inverse random values we find that

RJS = y− y2
2E (x̄2)−1 ≤ y− y2

2 (E x̄2)−1 = R0 + 4(n− 1)N−2/(~µ2 + y).

�
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Thus, for large N the James–Stein estimator practically is not worse
than the unknown best a priori shrinkage estimator that may be con-
structed if the length of the vector is known.

Application in the regression analysis.
Consider the regression model

Y = Xβ + ε, ε ∼ N(0, I),

where X is a non-random rectangular matrix of size N×n of a full rank,
β ∈ Rn, and I is the n × n identity matrix. The standard minimum
square solution leads to the estimator β̂0 = (XTX)−1XTY, that is used
in applied problems and included into most of applied statistics software.
The effect of application of the James–Stein estimator for shrinking of
vectors β̂0 was studied in [29]. Let the (known) plan matrix is such
that XTX is the identity matrix. Then the problem of construction
of regression model of best quality (in the meaning of minimum sum of
residual squares) is reduced to estimation of the vector β = E XTY with
the minimum square risk. The application of the Stein-type estimators
allows to choose better versions of linear regression (see [33], [84]).

This short review shows that the fundamental problem of many-
dimensional statistics - estimation of the position of the center of popu-
lation is far from being ultimately solved. The possibility of improving
estimators by shrinking attracts our attention to the improvement of
solutions to other statistical problems.

Chapter 2 of this book presents an attempt of systematical advance
in the theory of improving estimators of expectation vectors of large
dimension.

In Section 2.1 the generalized Stein-type estimators are studied in
which shrinkage coefficients are arbitrary functions of sample mean vec-
tor length. The boundaries of the quadratic risk decrease are found. In
Section 2.2 it is established that in case when the dimension is large
and comparable with sample size, shrinking of a wide class of unbiased
estimators reduces the quadratic risk independently of distributions. In
Section 2.3, the Stein effect is investigated for infinite-dimensional esti-
mators. In Section 2.4 ”component-wise” estimators are considered that
are defined by arbitrary ”estimation functions” presenting some func-
tional transformation of each component of sample mean vector. The
quadratic risk of this estimator is minimized with the accuracy to terms
small for large dimension and sample size.
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The Kolmogorov Asymptotics

In 1967 Andrei Nikolaevich Kolmogorov was interested in the depen-
dence of errors of discrimination on sample size. He solved the following
problem. Let x be a normal observation vector, and x̄ν be sample aver-
ages calculated over samples from populations number ν = 1, 2. Suppose
the covariance matrix is the identity matrix. Consider a simplified dis-
criminant function

g(x) = (x̄1 − x̄2)T
(
x− (x̄1 + x̄2)/2

)

and the classification rule w(x) > 0 against w(x) ≤ 0. This function
leads to the probability of errors αn = Φ(−G/√D), where G and D are
quadratic functions of sample averages having a non-central χ2 distri-
bution. To isolate principal parts of G and D, Kolmogorov proposed
to consider not one statistical problem, but a sequence of n-dimensional
discriminant problems in which the dimension n increases along with
sample sizes Nν , so that Nν →∞ and n/Nν → λν > 0, ν = 1, 2. Under
these assumptions he proved that the probability of error αn converges
in probability

plim
n→∞

αn = Φ
(
− J − λ1 + λ2

2
√
J + λ1 + λ2

)
, (7)

where J is the square of the Euclidean limit ”Mahalanobis distance”
between centers of populations. This expression is remarkable by that
it explicitly shows the dependence of error probability on the dimen-
sion and sample sizes. This new asymptotic approach was called the
”Kolmogorov asymptotics”.

Later L.D.Meshalkin and the author of this book deduced formula (7)
for a wide class of populations under the assumption that the variables
are independent and populations approach each other in the parameter
space (are contigual) [45], [46].

In 1970 Yu.N.Blagoveshchenskii and A.D.Deev studied the probabil-
ity of errors for the standard sample Fisher–Andersen–Wald discriminant
function for two populations with unknown common covariance matrix.
A.D.Deev used the fact that the probability of error coincides with the
distribution function of g(x). He obtained an exact asymptotic expan-
sion for the limit of the error probability α. The leading term of this
expansion proved to be especially interesting. The limit probability of
an error (of the first kind) proved to be

α = Φ
(
−Θ

J − λ1 + λ2

2
√
J + λ1 + λ2

)
,
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where the factor Θ =
√

1− λ, with λ = λ1λ2/(λ1 +λ2) accounts for the
accumulation of estimation inaccuracies in the process of the covariance
matrix inversion. It was called ”the Deev formula”. This formula was
thoroughly investigated numerically and a good coincidence was demon-
strated even for not great n,N.

Note that starting from Deev’s formulas one can easily see that the
discrimination errors can be reduced if to use the rule g(x) > θ against
g(x) ≤ θ with θ = (λ1 − λ2)/2 6= 0. A.D.Deev also noticed [18] that the
half-sum of discrimination errors can be further decreased by weighting
of summands in the discriminant function.

After these investigations it became obvious that by keeping terms
of the order of n/N one obtains a possibility of using specifically mul-
tidimensional effects for the construction of improved discriminant and
other procedures of multivariate analysis. The most important conclu-
sion was that traditional consistent methods of multivariate statistical
analysis should be improvable, and a new progress of theoretical statis-
tics is possible oriented to obtaining nearly optimal solutions for fixed
samples.

The Kolmogorov asymptotics (”increasing dimension asymptotics”,
[3]) may be considered as a calculation tool for isolating leading terms
in case of large dimension. But the principle role of the Kolmogorov
asymptotics is that it reveals specific regularities produced by estima-
tion of a large number of parameters. In a series of further publications,
this asymptotics was used as a main tool of investigation of essentially
many-dimensional phenomena characteristic for high-dimensional statis-
tical analysis. The constant n/N became an acknowledged characteristics
in many-dimensional statistics.

In Section 5.1 the Kolmogorov asymptotics is applied for the develop-
ment of theory allowing to improve the discriminant analysis of vectors
of large dimension with independent components. The improvement is
achieved by introducing appropriate weights of contributions of inde-
pendent variables in the discriminant function. These weights are used
for the construction of asymptotically unimprovable discriminant pro-
cedure. Then the problem of selection of variables for discrimination is
solved and the optimum selection threshold is found.

But the main success in the development of multiparametric solutions
was achieved by combining the Kolmogorov asymptotics with the spec-
tral theory of random matrices developed independently at the end of
20th century in another region.



SPECTRAL THEORY OF INCREASING RANDOM MATRICES 11

Spectral Theory of Increasing Random Matrices

In 1955 the well-known physicist theoretician E. Wigner studied en-
ergy spectra of heavy nuclei and noticed that these spectra have a char-
acteristic semicircle form with vertical derivatives at the edges. To ex-
plain this phenomenon he assumed that very complicated hamiltonians
of these nuclei can be represented by random matrices of high dimen-
sion. He found the limit spectrum of symmetric random matrices of
increasing dimension n → ∞ with independent (over-diagonal) entries
Wij , zero expectation and the variance E W 2

ii = 2v2, E Wij = v2 for
i 6= j [88]. The empirical distribution function (”counting function”) for
eigenvalues λi of these matrices

Fn(u) = n−1
n∑

i=1

ind (λi ≤ u)

proved to converge almost surely to the distribution function F (u) with
the density

F ′(u) = (2πv2)−1
√

4v2 − u2, |u| ≤ 2|v|
(”limit spectral density”). This distribution was called Wigner’s distri-
bution.

In 1967 V.A.Marchenko and L.A.Pastur published the well-known pa-
per [43] on the convergence of spectral functions of random symmetric
Gram matrices of increasing dimension n→∞. They considered matri-
ces of the form

B = A+N−1
N∑
m=1

xmxTm

where A are non-random symmetric matrices with converging counting
functions FAn(u) → FA(u), and xm are independent random vectors
with independent components xmi such that E xmi = 0 and E x2

mi = 1.
They assumed that the ratio n/N → y > 0, distribution are centrally
symmetric and invariant with respect to components numeration, and
the first four moments of xmi satisfy some tensor relations. They es-
tablished the convergence FBn(u)→ FB(u), where FBn(u) are counting
functions for eigenvalues of B, and derived a specific nonlinear relation
between limit spectral functions of matrices A and B. In the simplest
case when A = I it reads

h(t) =
∫

(1 + ut)−1dFB(u) = (1 + ts(t))−1,
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where s(t) = 1 − t + yh(t). By the inverse Stilties transformation, they
obtained the limit spectral density

F ′B(u) =
1√

2πyu

√
(u2 − u)(u− u1), u1 ≤ u ≤ u2.

where u2, u1 = (1 ± √y)2. If n > N , the limit spectrum has a discrete
component at u = 0 that equals 1−N/n.

In 1975–2001 V.L.Girko created an extended limit spectral theory of
random matrices of increasing dimension that was published in a series
of monographs (see [22]-[26]). Let us describe in general features some
of his results. V.L.Girko studies various matrices formed by linear and
quadratic transformations from initial random matrices X = {xmi} of
increasing dimensions N×n with independent entries. The aim of his in-
vestigation is to establish the convergence of spectral functions of random
matrices to some limit non-random functions F (u) and then to establish
the relation between F (u) and limit spectral functions of non-random
matrices. For example, for B = ATXXTA the direct functional relation
is established between limit spectra of non-random matrices A and ran-
dom B. V.L.Girko calls such relations ”stochastic canonical equations”
(we prefer to call them ”dispersion equations”).

In the first (Russian) monograph ”Random Matrices” published in
1975, V.L.Girko assumes that all variables are independent, spectral
functions of non-random matrices converge, and the generalized Linde-
berg condition holds: for any τ > 0

lim
n→∞

N−1
N∑
m=1

n−1
n∑

i=1

x2
mi ind (x2

mi ≥ τ) P→ 0.

The main result of his investigations in this monograph was a num-
ber of limit equations connecting spectral functions of different random
matrices and underlying non-random matrices.

In monograph [25] (1995) V.L.Girko applied his theory specifically
to sample covariance matrices. He refines his theory by withdrawing
the assumption on the convergence of spectral functions of true covari-
ance matrices. He postulates a priori some ”canonical” equations, proves
their solvability, and only then reveals their connection with limit spectra
of random matrices. Then V.L.Girko imposes more restrictive require-
ments to moments (he assumes the existence of four uniformly bounded
moments) and finds limit values of separate (ordered) eigenvalues.
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Investigations of other authors in the theory of random Gram matri-
ces of increasing dimension differ by more special settings and by less
systematic results. However, it is necessary to cite paper by Q.Yin,
Z.Bai, and P. Krishnaia (1984), who were first to establish the existence
of limits for the least and the largest eigenvalues of Wishart matrices. In
1998, Z.Bai and J.Silverstein [9] discovered that eigenvalues of increasing
random matrices stay within the boundaries of the limit spectrum with
probability 1.

Spectral Functions of Sample Covariance Matrices.
Chapter 3 of this book presents the latest development in the spec-

tral theory of sample covariance matrices of large dimension. Methods
of spectral theory of random matrices were first applied to sample co-
variance matrices in paper [63] of the author of this monograph (1983).
The straightforward functional relation was found between limit spectral
functions of sample covariance matrices with limit spectral functions of
unknown true covariance matrices. Let us cite this result since it is of
a special importance for the multiparametric statistics. Spectra of true
covariance matrices Σ of size n× n are characterized by the ”counting”
function

F0n(u) = n−1
n∑

m=1

ind (λi ≤ u), u ≥ 0,

of eigenvalues λi, i = 1, 2, . . . , n. Sample covariance matrices are calcu-
lated over samples X = {xm} of size N , have the form

C = N−1
N∑
m=1

(xm − x̄)(xm − x̄)T .

where x̄ are sample average vectors.

Theorem 1. If n-dimensional populations are normal N(0,Σ),
n → ∞, n/N → λ > 0, and functions F0n(u) → F0(u), then for each
t ≥ 0 the limit exist

h(t) = lim
n→∞

E n−1tr (I + tC)−1 =
∫

(1 + ts(t)u)−1dF0(u), (8)

and E (I + tC)−1 = (I + ts(t)Σ)−1 + Ωn,

where s(t) = 1 − λ + λh(t) and ‖Ωn‖ → 0 (here the spectral norms of
matrices are used).

In 1995 the author of this book proved that these relations remain
valid for a wide class of populations restricted by the values of two specific



14 I. INTRODUCTION

parameters: the maximum fourth central moment of a projection of x
onto non-random axes (defined by vectors e of unit length)

M = sup
|e|=1

E (eTx)4 > 0

and measures of dependence of variables

ν = sup
‖Ω‖=1

var (xTΩx/n), and γ = ν/M,

where Ω are non-random symmetric positive semidefinite matrices of
unit spectral norm. Note that for independent components of x, the
parameter ν ≤ M/n. For normal distribution γ ≤ 2/3n. The situation
when the dimension n is large, sample size N is large, the ratio n/N is
bounded, the maximum fourth moment M is bounded, and γ is small,
may be called the situation of the multiparametric statistics applicability.

In Section 3.1 the latest achievements of spectral theory of large Gram
matrices and sample covariance matrices are presented. Theorem 1 is
proved under weakest assumptions for wide class of distributions. An-
alytical properties of h(z) are investigated and finite location of limit
spectra is established. In Section 3.2 the dispersion equations similar to
(8) are derived for infinite-dimensional variables.

Note that the regularization of the inverse sample covariance matrix
C−1 by an addition of a positive ”ridge” parameter α > 0 to the diagonal
of C before inversion produces the resolvent of C involved in Theorem
1. Therefore, the ridge regularization of linear statistical procedures
leads to functions admitting the application of our dispersion equations
with remainder terms small in the situation of multiparametric statis-
tics applicability. Theorems proved in Sections 3.1 allow to formulate
the Normal Evaluation Principle, presented in Section 3.3. It states that
limiting expressions of standard quality functions for regularized multi-
variate statistical procedures are determined by only two moments of
variables and may be approximately evaluated under the assumption of
populations normality.

We say that function f(x) of variable x from population S allows ε-
normal evaluation in the square mean, if for S some normal distribution
exists y ∼ N(~µ,Σ) with ~µ = E x and Σ = cov (x,x) such that

E (f(x)− f(y))2 ≤ ε
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Proposition 3. Under conditions of multiparametric statistics ap-
plicability (large N , bounded n/N and M , and small γ), the principal
parts of a number of standard quality functions of regularized linear pro-
cedures allow ε-normal evaluation with small ε > 0.

This means that, in the multiparametric case, it is possible to develop
(regularized) statistical procedures such that

1/ their standard quality functions have a small variance and allow
reliable estimation from sample data;

2/ the quality of these procedures is only weakly depending on distri-
butions.

Constructing Multiparametric Procedures

In Chapter 4 of this book the spectral theory of sample covariance
matrices is used for systematical construction of practical approximately
unimprovable procedures. Using dispersion equations one can calculate
leading terms of quality functions in terms of parameters excluding de-
pendence on random values, or, on the opposite, to express quality func-
tions only in terms of observable data excluding unknown parameters.
To choose an essentially multivariate statistical procedure of best quality,
one may solve two alternative extremum problems:

a/ find an a priori best solution of statistical problem using the ex-
pression of quality function as a function only on parameters;

b/ find the best statistical rule using the quality function presented
as a function of only observable data.

For n� N all thus improved multiparametric solutions pass to stan-
dard consistent ones.

In case of large n and N the following practical recommendation may
be offered.

1/ For multivariate data of any dimension it is desirable to apply al-
ways stable and not degenerate approximately optimal multiparametric
solutions instead of traditional methods consistent only for fixed dimen-
sion.

2/ It is plausible to compare different multivariate procedures theo-
retically for large dimension and large sample size by quality function
expressed in terms of first two moments of variables.

3/ Using the multiparametric technique it is possible to calculate prin-
cipal parts of quality functions from sample data, compare different ver-
sions of procedures and choose better ones for treating concrete samples.
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Let us describe the technology of construction of unimprovable mul-
tiparametric procedures.

1/ Standard multivariate procedure is regularized and a wide class of
regularized solutions is chosen.

2/ The quality function is studied and its leading term is isolated.
Then one of two tactics (a) or (b) is followed.

Tactics ”a”
1. Using dispersion equation, the observable variables are excluded

and the principal part of quality function is presented as a function only
on parameters.

2. The extremum problem is solved and an a priori best solution is
found.

3. The parameters in this solution are replaced by statistics (hav-
ing small variance), and a consistent estimator of the best solution is
constructed.

4. It is remains to prove that this estimator leads to a solution whose
quality function approximates well the best quality function.

Tactics ”b”
1. Using dispersion equations the unknown parameters are excluded

and the principal part of quality function is expressed as a function only
on statistics.

2. An extremum problem is solved and the approximately best solu-
tion is obtained depending only on observable data.

3. It is proved that this extremum solution provides the best quality
with accuracy to remainder terms of the asymptotics.

In Chapter 4 this multiparametric technique is applied to construction
of a number multivariate statistical procedures that are surely not de-
generate and are approximately optimal independently of distributions.
Among these are problems of optimal estimation of the inverse covari-
ance matrices, optimal matrix shrinkage for sample mean vector, and
minimizing quadratic risk of sample linear regression.

In 1983 the author of this book found [63] conditions providing the
minimum of limit error probability in the discriminant analysis of large-
dimensional normal vectors x ∼ N(~µν ,Σ), ν = 1, 2, within a generalized
class of linear discriminant function. The inverted sample covariance ma-
trix C in the standard discriminant ”plug-in” linear discriminant func-
tion is replaced by the matrix

Γ(C) =
∫

t>0

(I + tC)−1dη(t)
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where η(t) are arbitrary functions of finite variation. In [63] the ex-
tremum problem is solved and the Stilties equation is derived for the
unimprovable function η(t) = η0(t). This equation was used in [82]
by V.S.Stepanov for treating some real (medical and economical) data.
He found that it provides remarkably better results even for not great
n, N ≈ 5− 10. In Section 5.2 this method is extended to a wide class of
distributions.

Optimal Solution to Empirical Linear Equations

The sixth chapter of this book presents the development of statistical
approach for finding minimum square pseudosolutions to large systems
of linear empiric equations whose coefficients are random values with
known distribution function. The standard solution to system of linear
algebraic equations (SLAE) Ax = b using known empiric random matrix
of coefficients R and empiric right-hand side vector y can be unstable
or non-existing if the variance of coefficients is sufficiently large. The
minimum square solution x̂ = (RTR)−1RTy with empiric matrix R and
empiric right-hand sides also can be unstable or non-existing. These
difficulties are produced by incorrect solution and the inconsistency of
random system. The well-known Tikhonov regularization methods [83]
are based on a rather artificial requirement of minimum complexity; they
guarantee the existence of a pseudosolution, but minimize neither the
quadratic risk, nor the residuals. Methods of the well known confluent
analysis [44] lead to the estimator x̂ = (RTR−λI)−1RTy, where λ ≥ 0,
and I is the identity matrix. These estimators are even more unstable
and surely do not exist when the standard minimum square solution does
not exist (due to additional estimating of the coefficients matrices).

In Chapter 6 the extremum problem is solved. The quadratic risk of
pseudosolutions is minimized within a class of arbitrary linear combi-
nations of regularized pseudosolutions with different regularization pa-
rameters. First, in Section 6.1, an a priori best solution is obtained
by averaging over all matrices A with fixed spectral norm and all vec-
tors b of fixed length. Section 6.2 presents the theoretical development
providing methods of the construction of asymptotically unimprovable
solutions of unknown SLAE Ax = b from empiric coefficient matrix R
and the right-hand side vector y under the assumption that all entries
of the matrix R and components of the vector b are independent and
normally distributed.

.


