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Spectra of large sample covariance matrices

Limit spectral theory of sample covariance matrices of increasing dimension was recently
used as a base for the development of improved non-degenerating methods of multivariate
statistical analysis. We present results of a numerical investigation of fundamental relations
of this theory (of the “canonical equations”) that thus prove the accuracy of asymptotic
relations, find boundaries of the applicability, and the rate of decrease of the remainder terms.
The distribution free property of quality functionals for regularized statistical procedures
is confirmed experimentally. We show that theoretical upper estimates of the asymptotics
remainder terms are 10–100 times overstated.

For the last decade, an extensive limit spectral theory of random matrices created by
V.L.Girko and other authors [1,2] was successfully applied to sample covariance matrices
[3–11]. Using asymptotic relations of spectral theory it was possible to construct a number
of improved and unimprovable statistical procedures of multivariate analysis [9]. New pro-
cedures have a number of substantial advantages over traditional consistent ones: they do
not degenerate for any data, are applicable and approximately optimal property is guaran-
teed independently on distributions. Most of these results were obtained in the asymptotic
approach in which the observation dimension n → ∞ along with sample sizes N so that
n/N → y > 0. This asymptotics serves as a tool of isolating principle parts of quality func-
tions, constructing their estimators, and the solution of extremal problems. The problem of
practical applicability of the improved procedures is now reduced to the estimation of the
magnitude of remainder terms. Some theoretical upper estimates of the remainder terms
were obtained in [7] and [9]. However, these estimates seem to be too restrictive for applica-
tions. The question of practical advantages of asymptotically improved and unimprovable
procedures remains open.

In this paper we offer an experimental numerical investigation of spectral functions of
large sample covariance matrices and the comparison with limit relations of spectral theory.

1 Theoretical Results

The remarkable feature of the spectral theory of random matrices of increasing dimension is
its independence on distributions. In [4] and [9] it is shown that applicability of asymptotic
formulas of this theory is provided by magnitudes of the following two parameters. Let x
be an observation vector, S be a population for which E x = 0. Denote

M = sup
|e|=1

E(eTx)4 > 0, (1)
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where e are non-random unity vectors;

γ = sup‖Ω‖≤1 var (xTΩx/n)/M, (2)

where Ω are non-random symmetric positive semidefinite matrices with spectral norms not
greater 1 (we will use only spectral norms of matrices).

Denote Σ = cov(x,x). For an non-degenerate normal distribution N(0,Σ), the values
M = 3‖Σ‖2, γ = 2/3 n−2tr Σ2. If Σ = I M = 3, γ = 2/3n. Let X = {xm} be a sample of
size N from population S. Let

x̄ = N−1

N∑
m=1

xm, C = N−1

N∑
m=1

(xm − x̄)(xm − x̄)T .

Here C is a sample covariance matrix (a biased estimator of Σ).
To be concise, denote y = n/N, τ =

√
Mt,

H = H (t) = (I + tC)−1, hn(t) = n−1tr H (t), sn(t) = 1− y + yhn(t).

The ”canonic” relation between spectral functions of the matrices Σ and C is presented
by the following statement.

Theorem 1 (corollary of [4]). For any populations with M > 0, for t ≥ 0,

hn(t) = n−1 tr(I + tŝ(t)Σ)−1 + ω(t), (3)

E H (t) = (I + tsn(t)Σ)−1 + Ω, (4)

and
var

(
n−1H (t)

) ≤ aτ 2/N,

where ω(t) = ‖Ω‖ ≤ aτ max (1, y)[τ
√
δ + (1 + τ 2)/

√
N ], δ = 2y2(γ + τ 2/N),

and a is a numeric constants.

In Chapter 1 of [2] , the expectation of n−1tr H (t) was found more accurately, and in [5]
it was shown that the variance of this function is O(n−1N−1. Using these results, we can
offer a stronger estimator for the case of Σ = I:

E |ω(t)| ≤ ω1(t)
def
= 2yt2(1 + ty)/

√
nN + 3t/N

The spectral equations (3) and (4) relate spectra of the observed covariance matrices C
to spectra of unknown matrices Σ.

The problem of recovering spectral functions for the matrices Σ by matrices C can be
solved in the form of limit relations. To pass to the limit, we consider a sequence of problems
of the statistical analysis

P = {(Π,Σ,N,X , x̄,C)n}, n = 1, 2, . . . , (5)

where (indexes n are omitted) Π is an n-dimensional population with Σ = cov(x,x), X is a
sample of size N .
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Theorem 2 (a corollary from [3], [4] and [9]). Let the moments (1) exist and be uniformly
bounded in P; as n→∞ let n/N → λ > 0, γ → 0, and for almost all u ≥ 0 the limit exists

F0(u)
def
= lim

n→∞
1

n

n∑
i=1

ind(λ0
i ≤ u), (6)

where λ0
1, . . . , λ

0
n are the eigenvalues of Σ.

Then for each t ≥ 0
1/ there exists the limit

h(t) = lim
n→∞

En−1tr H (t) =

∫
(1 + ts(t)u)−1dF0(u), (7)

where s(t) = 1− λ+ λh(t);
2/ the variance var (n−1 tr H (t))→ 0 n→∞.

The “canonical”integral equation (7) presents the main result of the limit spectral theory
of sample covariance matrices of increasing dimension.

Consider an empiric distribution function for eigenvalues λi of matrices C

Fn(u) = n−1

n∑
i=1

ind (λi ≤ u), u ≥ 0. (8)

Theorem 3 (see [4]). Let assumptions of Theorem 2 hold and, in addition, λ > 0 and all
eigenvalues of all matrices Σ in P exceed c1 > 0, where c1 does not depend on n.

Then the function h(z) allows an analytical continuation to the region of complex z and
satisfies the Gölder condition for all z; the weak convergence in probability holds Fn(u) →
F (u), u ≥ 0; and for all z, except z < 0,

h(z) =

∫
(1− zu)−1dF (u).

In [6] it is shown that as n → ∞ all eigenvalues of matrices C lay on the limit support
almost surely.

Consider a special case: let Σ = I, n = 1, 2, . . . (see [9], Chapter 2). In this case, the
function h(z) satisfies the quadratic equation h(z)−1 = zh(z)s(z), and the spectral density
of C is

F ′(u) =
√

(u2 − u)(u− u1)/(2πλu), (9)

where u1 = (1−
√
λ)2, u2 = (1 +

√
λ)2 for u1 ≤ u ≤ u2 The function

h(t) = 2
(√

(1 + (1− λ)t)2 + 4tλ+ 1 + (1− λ)t
)−1

(10)
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Suppose, additionally, that there exists an ε > 0 such that the quantity

sup
|e|=1

E(eTx)4+ε

is uniformly bounded in P and the condition (1.3) from [3] holds. Then Theorem 11.1
from [3] states that as n → ∞ the minimum and maximum eigenvalues of the matrices C
converge in probability to the magnitudes α1 and α2 such that

αi = plim

(
1− y

n

n∑

k=1

λk
λk − xi

)
, i = 1, 2,

where x = x1 x = x2 are the minimal and maximal real roots of the equation

y

n

n∑

k=1

λ2
k

(λk − x)2
= 1.

2 Numeric Experiments

Numeric experiments were performed with the purpose

• to investigate the relation between spectral functions of true covariance matrices Σ
and sample covariance matrices C, given by Equations (3) and (7);

• to study the convergence of the empirical distribution function of eigenvalues of C for
large n;

• to recover spectra of unknown true covariance matrices by observations using Girko’s
G-estimator and to estimate the accuracy of the inverse problem solution;

• to investigate boundaries of spectra of matrices C and to compare these with the
theory [4];

• to study the dependence of the remainder terms ω(t) in (3) and (5) on the parameters
t, M , y = n/N and γ, and to compare with the upper estimates;

• and to estimate experimentally the boundaries of the applicability of the asymptotic
equation (3) to distributions different from normal.

Given a fixed distribution law, n, and N , samples were generated and used for calculation
of sample means, sample covariance matrices, and spectral functions hn(t), H (t), and Fn(u)

(denote ĥ(t) = hn(t), F̂ (u) = Fn(u) and their averages over s experiments by 〈ĥ(t)〉 and

〈F̂ (u)〉). These values were sharpened in a series of s experiments. The random inaccuracy
ω(t) of the equation (3) was also calculated in a series of s experiments (an estimator
of E ω(t)), and its mean square deviation was found (an estimator of the variance var
ω(t)). These characteristics are compared in tables with theoretical upper estimates of the
asymptotic formulas inaccuracy.
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2.1 Empirical spectral function ĥ(t).
Distribution x ∼ N(0, I).

In Tables 1–4 the first two lines present the values of the function ĥ(t) for two independent
experiments, the third line contains an estimator of the expectation along with the mean
square deviation (in a series of s = 100 experiments). In the last line, the theoretical
function h(t) is shown by (9). The analytical dependence of the deviations of the form

|〈ĥ(t)〉 − h(t)| = kN−b was fitted with the minimum square method: it is shown under the
tables with the mean square error.

Table 1.
Table 2.
Table 3.
Table 4.

From Tables 1–4 one can see the systematic decrease of 〈ĥ(t)〉 with growing N for fixed
y = n/N that can be explained by the increase of accuracy in the resolvent denominator.

Values of 〈ĥ(t)〉 tend to theoretical functions h(t) as N increases, and the difference decreases

approximately by the law N−1. The scatter of empiric 〈ĥ(t)〉 in two experiments is covered
by 2.5 σ, where σ2 is the sample variance.

2.2 Accuracy of the basic spectral equation.
Distribution x ∼ N(0, I)

In Tables 5-8 the experimental inaccuracy ω(t) for the equation (3) is presented. The value

ŝ(t) was calculated by the formula ŝ(t) = 1− y + yĥ(t), where ĥ(t) was taken from Tables
1–4.

As in the former tables, the first two lines present two independent experimental values
of ω̂(t), the next line shows sample mean and the mean square deviation in a series of
s = 100 experiments. The fourth line contains theoretical upper inaccuracy ω(t) in (3) for
a = 1 (this estimator is distribution free). The 5th line presents the minimum value of a,
for which (3) holds with ω(t) substituted by its expectation; in the 6th line, the refined
theoretical upper estimate ω1(t) is shown (valid for normal distribution).

Using ω̂(t) the analytical dependence ω(t) = kN−c on N was constructed by the min-
imum square method for the expectation and the square scatter. It is shown under the
tables.

Table 5.
Table 6.
Table 7.
Table 8.

From Tables 5-8 one can see that the average inaccuracy (in the series of 100 experiments)
of the equation (3) ω̂(t) decreases approximately by the law N−1 as n = N increases.
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Theoretical upper estimate ω(t) decreases as N−1/2, while the more refined estimator ω1(t)
(valid for normal distributions) decreases as N−1. For n = N , the upper estimate ω(t) in
all cases is comparable with 1 or more and has no sense as much the inaccuracy ω(t) is
not greater 1 by definition. The upper estimate ω1(t) proves to be ten times overstated
as compared with the experimental value. For n = N , the mean square deviation of ω(t)

decreases by the law N−1 that corresponds to the estimator for the variance of ĥ(t) for
normal distribution found in [5], while (3) guarantees only the law N−1/2. The estimator of

the variance of ĥ(t) in [5] proves to be overstated by 5 times as compared with the empiric
mean square deviation of ω(t) for t = 1 and n = N = 50. The disagreement with the
experiment increases with the increase of t.

In Fig.1 for n = N = 50, plots of functions ĥ(t) (solid line) and h(t) (discontinuous line)
are presented together with their difference (dotted line).

Fig. 1.

2.3 Spectral function ĥ(t) for binomial
and normal populations)

In Tables 9–10 the estimators 〈ĥ(t)〉 of h(t) expectation are presented calculated in a series

of s = 100 experiments together with the mean square deviation σ(t) of ĥ(t). Spectral
functions are compared for normal distribution N(0, I) and discrete binomial law B(1, p)
(in which each component of x takes on values a = −

√
p−1(1− p) or b =

√
p(1− p)−1

(p > 0) with the probabilities P(a) = p, P(b) = 1− p so that E x = 0 and E x2 = 1.
In the last line, limit values h(t) are shown calculated by (7).

Table 9.
Table 10.

One can see a good agreement of experimental results for these two distributions and
a good fit to theoretical limits as well as a small scatter of estimation. Theoretically ex-
pected mean square scatter can be measured by the quantity (nNs)−1/2 = 0.002. This fact
demonstrates well the insensibility of spectral functions of sample covariance matrices to
distributions when dimension is high (n = 50).

2.4 Function ĥ(t) for non-standard normal distribution

In Table 11 the results of numerical modeling are presented (the estimator of the expectation
and its mean square deviation calculated in a series of experiments) for normal distribution
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with the covariance matrix

Σ =




2 1 −1 . . . 1 −1
−1 2 −1 . . . 1 −1
...

...
...

. . .
...

...
−1 1 −1 . . . 2 −1
−1 1 −1 . . . 1 2



,

which corresponds to observations with the correlation coefficient ±1/2 and variance 2. The
eigenvalues of this matrix include (for even n) n/2 units and n/2 of 3s. In the lowest line, the
limit function h(t) is shown. This function was calculated by (7) as a root of the equation

2h = (1 + ts)−1 + (1 + 3ts)−1, h = h(t), s = s(t).

Table 11.
One can see a good agreement between the experimental and theoretical values of the

function ĥ(t).

2.5 Function ĥ(t) and the inaccuracy ω̂(t)
for different coupling of variables

Tables 12-14 present results of numeric simulation of the function ĥ(t) and the inaccuracy
ω̂(t) (estimator of the expectation and its mean square scatter in s = 100 experiments) for
normal population with the covariance matrix

Σ =




1 r . . . r r
r 1 . . . r r
...

...
. . .

...
...

r r . . . 1 r
r r . . . r 1




(11)

for different r < 1. This matrix has a spectrum with a single eigenvalue λ1 = 1 − r + rn
and n − 1 eigenvalues with λ = 1 − r. For large n, the parameter τ in (3) approximately
equals

√
3rn. Theoretical limit value of this function can be calculated from (7) and is

h(t) = 2
(√

(1 + t(1− y)(1− r))2 + 4ty(1− r) + 1 + t(1− y)(1− r)
)−1

Table 12.
Table 13.
Table 14.

These tables show a good fit between experimental average values of ĥ(t) and limit values
calculated from the basic equation (7). The good fit keeps on even for r = 0.9. Theoretical
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upper estimates of ω(t) are strongly overstated. For large matrices of the form (11), the
fourth maximum moment M ≈ 3r2n2, and theoretical upper estimate increases n2 times.
These estimates are proportional to powers of M , whereas Tables 12–14 show the linear
increase of ω(t) with r or

√
r. Thus, the basic limit spectral equation (7) remains also valid

for strongly coupled variables (up to r = 0.9).

2.6 Spectra of sample covariance matrices.
Distribution x ∼ N(0, I)

Sample covariance matrices C were simulated. Table 15 shows maximal eigenvalues of
C together with mean square deviations and the deviation of the averaged value from the
theoretical limit value λmax = 4. Below the table, the empirical regularity is shown obtained
by the minimum square method.

Table 15.

In Table 16, the sample mean and the mean square deviation is presented for the uniform
norm of the difference ‖F̂ − F‖ of functions F̂ (u) and F (u), where F̂ (u) was calculated by
(8), and F ′(u) is the theoretical density. Table 17 presents sample mean of the function

F̂ (1) and its mean square deviation calculated in a series of experiments. Below, the empiric
formulas are shown fitting the data from Tables 16 and 17.

Table 16.
Table 17.

One can see that the disagreement with the theoretical limit formula (7) decreases pro-
portionally to N−0.8 and N−1.0 and is approximately 0.04 for the uniform norm of the
difference, and 0.007 for the function at the point u = 1. This fact indicates the lessening
of the agreement at the endpoints of the spectra.

For the illustration, we present a plot showing theoretical and experimemtal distribution
functions F (u) and the corresponding density F ′(u) for n = N = 75 (Fig. 2.).

Fig. 2
Solid lines denote the empiric distribution function F̂ (u) (decreasing) and the smoothed

density F̂ ′(u) (increasing); discontinuous lines denote limit functions F (u) and F ′(u).

2.7 Girko’s G2-estimator

V. L. Girko ([2], Chapter 5) suggested an estimator for the spectral function of unknown
true covariance matrices Σ. To estimate η(t) = n−1tr (I + tΣ)−1, he proposed the statistics

η̂(t) = h(θ), where θ is a root of the equation t = θ(1 − y + yĥ(θ)), and y = n/N. In
[3] it is proved that under some assumptions, this equation is always solvable for t > 0
and defines a function that converges as n → ∞ and n/N → λ almost surely to η(t).
Experimental investigation of this estimator is shown in Table 18. The empirical function
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η̂(t) was calculated by spectra of matrices C by averaging over s = 100 experiments along
with its mean square deviation.

For the comparison, we also show the theoretical value η(t) = (1 + t)−1. In the lower
line, the empirical laws are shown for the the deviation 〈η(t)〉 from η(t).

Table 18.
This table demonstrates the convergence of G-estimator by the law O(N−1).

3 Conclusions

Our numerical experiments show first that spectral functions of sample covariance matrices
of large dimension converge as n→∞ and n/N → λ, where n is the dimension of observa-
tions, and N are sample sizes. The empiric variance of the function hn(t) = n−1tr (I+tC)−1

decreases by the law near to n−1N−1 as predicted by the theorical estimate [5]. The the-
oretical upper estimate for the variance of hn(t) by Theorem 1 shows only the decrease
by the law N−1 that seems to be related to taking no account of the independence of the
observation vector components. The theoretical coefficient of n−1N−1 for the asymptotic
variance proves to be excessive by factor 5–10 . In all experiments we observed the conver-
gence of ĥ(t) to the theoretical value h(t) defined by the canonic spectral equation (7). The

difference between h(t) and averaged values of ĥ(t) decreases approximately as N−1. The
theoretical upper estimates of the inaccuracy of asymptotic formulas found in [7] and [9]
prove to be substantially overstated (by hundreds times). A more precise upper estimate of
this inaccuracy in [5] proves to be overstated by 2–4 times.

The applicability of all asymptotic theory [4–10] is restricted by the magnitude of the
maximal invariant fourth momentum (1) that increases as n2 as the dimension n → ∞ if
variables are strongly coupled and all correlation coefficients equal 1. The dependence of
the accuracy of the asymptotic equation (3) on variables coupling (tables 12–14) show that
the theoretical requirements to small coupling seem too stringent. The empirical law of the
dependence of inaccuracy on the correlation coefficient r does not agree with theoretical
laws for upper estimates of the remainder terms ω(t) and ω1(t). Experiments show that, for
normal populations, the equation (7) holds well even for r ≈ 0.8 when n = N = 50. Thus,
methods of estimation of the remainder terms developed in [7] and [9] provide only weak
estimates, that require sharpening and revision. It remains not quite clear what minimal
restrictions on the dependence of variables are yet necessary for the canonic equations [7]
to be accurate.

Our experiments allow to make a general conclusion that the basic canonic spectral
equations for large sample covariance matrices proves to be accurate even for not large n
and N : the average inaccuracy in different experiments decreases from 0.05 for n = N = 10
to 0.01 for n = N = 50. This result also keeps for non-standard normal distribution and for
other distributions, and in particular, for discrete distributions and remains true for some
cases of strongly coupled variables.
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In [10] a “Normal evaluation principle” was offered stating that standard quality func-
tionals of regularized multivariate statistical procedures are only weakly dependent on mo-
ments of variables higher than the second, and thus, are approximately the same as for
normal distributions. This property is a consequence of the corresponding properties of
spectral functions of sample covariance matrices that are confirmed experimentally.

Our results substantiate the asymptotical approach of [7] and [9] and show that the
improved methods presented in these investigations are expected to have the accuracy well
acceptable for applied statistical investigations even for not large parameters n and N
(possibly, even for n = N = 5− 10).
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Table 1: Spectral function ĥ(t): x ∼ N(0, I), t = 1, y = 1, s = 100

N = 2 N = 4 N = 10 N = 20 N = 50

ĥ(t) : 1 0.806 0.711 0.634 0.652 0.622

ĥ(t) : 2 0.820 0.714 0.630 0.612 0.619

〈ĥ(t)〉 0.794± 0.107 0.699± 0.068 0.657± 0.025 0.639± 0.014 0.626± 0.005
h(t) 0.618 0.618 0.618 0.618 0.618

Empirical law: 〈ĥ(t)〉 − h(t) ≈ 0.32N−0.93 ± 0.23N−0.96

Table 2: Spectral function ĥ(t): x ∼ N(0, I), t = 2, y = 1, s = 100

N = 2 N = 4 N = 10 N = 20 N = 50

ĥ(t) : 1 0.750 0.615 0.591 0.504 0.510

ĥ(t) : 2 0.874 0.629 0.515 0.537 0.508

〈ĥ(t)〉 0.700± 0.103 0.632± 0.064 0.544± 0.028 0.521± 0.015 0.508± 0.006
h(t) 0.500 0.500 0.500 0.500 0.500

Empirical law: 〈ĥ(t)〉 − h(t) ≈ 0.46N−1.0 ± 0.21N−0.90

Table 3: Spectral function ĥ(t): x ∼ N(0, I), t = 1, y = 1/2, s = 100

N = 2 N = 4 N = 10 N = 20 N = 50

ĥ(t) : 1 0.493 0.815 0.555 0.580 0.573

ĥ(t) : 2 0.537 0.815 0.585 0.578 0.566

〈ĥ(t)〉 0.740± 0.201 0.676± 0.120 0.588± 0.048 0.581± 0.022 0.568± 0.010
h(t) 0.562 0.562 0.562 0.562 0.562

Empirical law: 〈ĥ(t)〉 − h(t) ≈ 0.42N−1.1 ± 0.43N−0.96
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Table 4: Spectral function ĥ(t): x ∼ N(0, I), t = 2, y = 1/2, s = 100

N = 2 N = 4 N = 10 N = 20 N = 50

ĥ(t) : 1 0.392 0.358 0.504 0.446 0.417

ĥ(t) : 2 0.170 0.736 0.369 0.422 0.422

〈ĥ(t)〉 0.708± 0.233 0.530± 0.132 0.459± 0.059 0.435± 0.026 0.424± 0.010
h(t) 0.414 0.414 0.414 0.414 0.414

Empirical law: 〈ĥ(t)〉 − h(t) ≈ 0.52N−1.0 ± 0.50N−0.98

Table 5: The remainder term ω(t) in Equation (??): x ∼ N(0, I), y = 1, t = 1, s = 100

N = 4 N = 6 N = 10 N = 20 N = 50
ω(t) : 1 0.120 0.0731 0.0570 0.0303 0.0161
ω(t) : 2 0.115 0.111 0.0637 0.0308 0.0110
〈ω(t)〉 0.117± 0.058 0.0815± 0.0373 0.0526± 0.0284 0.0254± 0.0141 0.00959± 0.00525
ω(t) 7.53 6.15 4.76 3.37 2.13
a 0.0155 0.0133 0.0111 0.00755 0.0045

ω1(t) 1.75 1.17 0.70 0.350 0.14

Empirical law: 〈ω(t)〉 ≈ 0.62N−1.2 ± 0.22N−0.93

Table 6: The remainder term ω(t) in Equation (??): x ∼ N(0, I), y = 1, t = 2, s = 100

N = 4 N = 6 N = 10 N = 20 N = 50
ω(t) : 1 0.172 0.147 0.0347 0.0668 0.0128
ω(t) : 2 0.193 0.0463 0.0880 0.0469 0.0113
〈ω(t)〉 0.167± 0.064 0.107± 0.047 0.0684± 0.0329 0.0309± 0.0162 0.0129± 0.0057
ω(t) 52.7 43.0 33.3 23.6 14.9
a 0.00318 0.00248 0.00205 0.00131 0.000862

ω1(t) 7.50 5.00 3.00 1.50 0.60

Empirical law: 〈ω(t)〉 ≈ 0.65N−1.0 ± 0.24N−0.92
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Table 7: The remainder term ω(t) in Equation (??): x ∼ N(0, I), y = 1/2, t = 1, s = 100

N = 4 N = 6 N = 10 N = 20 N = 50
ω(t) : 1 −0.151 0.168 −0.0252 0.0561 0.0154
ω(t) : 2 0.0928 0.158 0.0253 0.0102 0.0153
〈ω(t)〉 0.124± 0.097 0.0784± 0.0746 0.0416± 0.0442 0.0216± 0.0237 0.00970± 0.00857
ω(t) 2.84 2.32 1.79 1.27 0.802
a 0.0438 0.0338 0.0232 0.017 0.0121

ω1(t) 1.28 0.85 0.51 0.26 0.10

Empirical law: 〈ω(t)〉 ≈ 0.45N−1.0 ± 0.44N−1.0

Table 8: The remainder term ω(t) in Equation (??): x ∼ N(0, I), y = 1/2, t = 2, s = 100

N = 4 N = 6 N = 10 N = 20 N = 50
ω(t) : 1 0.285 0.321 0.0707 −0.0126 0.0182
ω(t) : 2 0.0647 0.0780 0.0906 0.0332 0.0175
〈ω(t)〉 0.169± 0.127 0.0897± 0.0843 0.0558± 0.0456 0.0284± 0.0241 0.0121± 0.0109
ω(t) 19.0 15.5 12.0 8.50 5.38
a 0.00891 0.00578 0.00464 0.00334 0.00224

ω1(t) 4.33 2.89 1.73 0.87 0.35

Empirical law: 〈ω(t)〉 ≈ 0.58N−1.0 ± 0.49N−1.0

Table 9: Spectral function 〈ĥ(t)〉 ± σ(t): y = 1, N = 50, s = 100

t = 0.1 t = 0.25 t = 0.5 t = 1 t = 2
N 0.917± 0.002 0.832± 0.004 0.736± 0.005 0.625± 0.006 0.509± 0.007

B(0.3) 0.918± 0.001 0.831± 0.002 0.736± 0.003 0.624± 0.005 0.507± 0.005
B(0.5) 0.918± 0.000 0.831± 0.001 0.736± 0.002 0.623± 0.003 0.505± 0.004
B(0.7) 0.918± 0.001 0.831± 0.002 0.736± 0.003 0.624± 0.004 0.507± 0.006
h(t) 0.916 0.828 0.732 0.618 0.500
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Table 10: Spectral function 〈ĥ(t)〉 ± σ(t): y = 1/2, N = 50, s = 100

t = 0.1 t = 0.25 t = 0.5 t = 1 t = 2
N 0.914± 0.003 0.819± 0.005 0.709± 0.006 0.572± 0.009 0.423± 0.011

B(0.3) 0.914± 0.002 0.818± 0.004 0.705± 0.005 0.566± 0.007 0.421± 0.007
B(0.5) 0.914± 0.000 0.818± 0.001 0.705± 0.003 0.565± 0.004 0.418± 0.005
B(0.7) 0.914± 0.002 0.818± 0.004 0.705± 0.005 0.567± 0.007 0.420± 0.007
h(t) 0.913 0.815 0.702 0.562 0.414

Table 11: Spectral function ĥ(t): N(0,Σ), Σ 6= I, N = 20, s = 100

y = 1 y = 1 y = 1 y = 1/2 y = 1/2 y = 1/2
t = 0.5 t = 1 t = 2 t = 0.5 t = 1 t = 2

〈ĥ(t)〉 0.65± 0.01 0.54± 0.01 0.44± 0.02 0.60± 0.02 0.47± 0.03 0.34± 0.03
h(t) 0.64 0.52 0.42 0.59 0.45 0.32

Table 12: Spectral function ĥ(0.5): N(0,Σ), N = 10, s = 100

y = 1 y = 0.5

〈ĥ(t)〉 h(t) 〈ω̂(t)〉 〈ĥ(t)〉 h(t) 〈ω̂(t)〉
r = 0 0.755± 0.023 0.732 0.03± 0.02 0.723± 0.039 0.702 0.03± 0.04
r = 0.2 0.769± 0.022 0.766 0.05± 0.02 0.766± 0.035 0.742 0.07± 0.04
r = 0.4 0.791± 0.019 0.805 0.07± 0.02 0.759± 0.033 0.788 0.07± 0.04
r = 0.6 0.820± 0.017 0.854 0.11± 0.02 0.777± 0.031 0.844 0.09± 0.03
r = 0.8 0.861± 0.012 0.916 0.16± 0.01 0.819± 0.023 0.913 0.13± 0.02
r = 0.9 0.888± 0.009 0.954 0.20± 0.01 0.838± 0.019 0.953 0.16± 0.02
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Table 13: Spectral function ĥ(1): N(0,Σ), N = 10, s = 100

y = 1 y = 0.5

〈ĥ(t)〉 h(t) 〈ω̂(t)〉 〈ĥ(t)〉 h(t) 〈ω̂(t)〉
r = 0 0.652± 0.030 0.618 0.05± 0.03 0.595± 0.044 0.562 0.05± 0.04
r = 0.2 0.667± 0.028 0.656 0.06± 0.03 0.654± 0.043 0.608 0.11± 0.04
r = 0.4 0.696± 0.023 0.703 0.11± 0.02 0.649± 0.037 0.667 0.10± 0.04
r = 0.6 0.743± 0.019 0.766 0.16± 0.02 0.677± 0.042 0.742 0.14± 0.04
r = 0.8 0.805± 0.016 0.854 0.25± 0.02 0.746± 0.026 0.844 0.21± 0.03
r = 0.9 0.850± 0.010 0.916 0.31± 0.01 0.786± 0.020 0.913 0.26± 0.02

Table 14: Spectraal function ĥ(2): N(0,Σ), N = 10, s = 100

y = 1 y = 0.5

〈ĥ(t)〉 h(t) 〈ω̂(t)〉 〈ĥ(t)〉 h(t) 〈ω̂(t)〉
r = 0 0.543± 0.026 0.500 0.07± 0.03 0.457± 0.044 0.414 0.06± 0.05
r = 0.2 0.558± 0.030 0.538 0.09± 0.03 0.541± 0.040 0.461 0.15± 0.04
r = 0.4 0.593± 0.030 0.587 0.14± 0.03 0.533± 0.039 0.523 0.14± 0.04
r = 0.6 0.652± 0.025 0.656 0.22± 0.03 0.559± 0.036 0.608 0.17± 0.04
r = 0.8 0.732± 0.019 0.766 0.33± 0.02 0.652± 0.034 0.742 0.27± 0.03
r = 0.9 0.801± 0.016 0.854 0.42± 0.02 0.719± 0.024 0.844 0.36± 0.03
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Table 15: Maximal eigenvalues of the matrix C: y = 1, N(0, I), s = 100

N = 2 N = 4 N = 6 N = 10 N = 20 N = 50
〈λmax〉 0.799± 0.806 2.32± 1.03 2.46± 0.66 3.05± 0.56 3.35± 0.35 3.70± 0.23

4− 〈λmax〉 3.20 1.68 1.54 0.946 0.655 0.298

Empirical law: 4− 〈λmax〉 ≈ 5.08N−0.713

Table 16: The uniform norm of the difference between F̂ (u) and F (u): N(0, I), y = 1,
s = 100

F̂ − F‖ : 1 ‖F̂ − F‖ : 2 〈‖F̂ − F‖〉
N = 2 0.607 0.500 0.596± 0.137
N = 4 0.438 0.250 0.356± 0.081
N = 6 0.254 0.223 0.251± 0.057
N = 10 0.213 0.218 0.174± 0.041
N = 20 0.0862 0.0640 0.0970± 0.0169
N = 50 0.0562 0.0539 0.0458± 0.0076

Empirical law: 〈‖F̂ − F‖〉 ≈ 1.060N−0.799

Table 17: Local difference between F̂ (1) and F (1): N(0, I), y=1, s = 100

N = 4 N = 6 N = 10 N = 20 N = 50

〈F̂ (1)〉 0.683± 0.169 0.680± 0.105 0.643± 0.062 0.632± 0.034 0.616± 0.015
F (1) 0.609 0.609 0.609 0.609 0.609

〈F̂ (1)〉 − F (1) 0.0735 0.0710 0.0340 0.0230 0.00680

Empirical law: 〈F̂ (1)〉 − F (t) ≈ 0.370N−0.996
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Table 18: Girko’s G-estimator of the function η(t): N(0, I), s = 100

y = 1 y = 1 y = 1/2 y = 1/2
t = 1 t = 2 t = 1 t = 2

N = 2 0.786± 0.114 0.683± 0.131 0.738± 0.265 0.571± 0.309
N = 4 0.630± 0.087 0.537± 0.095 0.608± 0.129 0.462± 0.136
N = 6 0.612± 0.053 0.470± 0.068 0.571± 0.095 0.430± 0.099
N = 10 0.564± 0.039 0.412± 0.051 0.541± 0.051 0.386± 0.071
N = 20 0.529± 0.022 0.379± 0.025 0.520± 0.026 0.359± 0.027
N = 50 0.514± 0.009 0.351± 0.011 0.508± 0.012 0.342± 0.012
η(t) 0.500 0.333 0.500 0.333

〈η̂(t)〉 − η(t) ≈ 0.54N−0.94 0.70N−0.93 0.47N−1.05 0.54N−1.02
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