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THEORY OF ESSENTIALLY

MULTIVARIATE STATISTICAL ANALYSIS

V. I. Serdobolskii

Introduction

It is well known that classical mathematical investigations in multivariate sta-
tistical analysis are reduced to calculation of some exact distributions and their
functions under an assumption of the observation normality. Traditional asymp-
totic methods of statistics (see, for example, [1]) were developed for one-dimensional
and small-dimensional problems. Their formal extrapolation to many-dimensional
problems (by a replacement of scalars by vectors and matrices) not accounting of
errors of a large number of parameters did not enrich the multivariate analysis nei-
ther with new methods, nor with new results interesting for applications. One can
say that central problems of the multivariate analysis remain unsolved. Attempts to
find non-improvable statistical procedures fail except for a few cases (see [2; Chap-
ter 8]). The simplest problem of the estimation of the expectation value vector
minimizing the quadratic risk is solved only for normal vectors with independent
components. Standard linear methods of the multivariate analysis may lead to un-
stable solutions or (if sample covariance matrix is degenerate) to no solution at all.
In the case when sample size is not much larger than the dimension of observations,
traditional methods of multivariate analysis do not manifest their consistency.

A substantial progress was achieved in investigations [3], [4], [5], and [6] carried
out by the initiative of A. N. Kolmogorov, where a new specific asymptotic approach
was developed. Under this approach, a sequence of statistical problems of increasing
dimension is considered, in which sample size increases along with the dimension in
such a way that the ratio of the dimension to sample size tends to a constant. This
constant became an additional parameter of the asymptotic theory. In contrast to
the conventional asymptotic approach in mathematical statistics, this new approach
was called the “increasing dimension asymptotics”, “i.d.a.” (see in [7, Chapter 2]).
It was discovered that terms of magnitude of the ratio of the dimension to sample
size are responsible for a number of essentially multivariate effects such as the
accumulation of errors of estimation, appearance of finite asymptotic biases and
multiples with vanishing variance and for effects related to the degeneration of
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2 V. I. SERDOBOLSKII

sample covariance matrices. The analysis of leading terms of this asymptotics
started the development of a systematic theory of essentially multivariate analysis;
its advance and achievements are presented below (citing only main publications).

In Section 1, first results are presented of the i.d.a. application to the inves-
tigation of the reliability of standard discriminant analysis of normal populations
(A. N. Kolmogorov, Yu. N. Blagoveschenskii, A. D. Deev, L. V.Arkharov, L. D. Me-
shalkin .) In Section 2, the development of limit spectral theory of sample covariance
matrices is described using methods of limit spectral theory of random matrices of
increasing dimension (V. A. Marchenko and L. A. Pastur, V. L.Girko et al.) Starting
form the publication [8] of 1983, this theory is a main tool for the development of a
theory of the essentially multivariate analysis. Until recently, the i.d.a. was applied
in a form of limit theorems, and only sometimes, rates of convergence were studied.
In Sections 3–6, new asymptotic investigations are presented, distinguished by the
isolation of i.d.a. principal terms for a fixed dimension and fixed sample sizes. The
remainder terms are estimated from above with accuracy to absolute constants.
They prove to be small under large samples and a large number of restrictively
dependent variables. In Section 3, a refined theory of spectral properties of sample
covariance matrices is developed. For a better understanding of the essence and of
methods of this new approach, the central theorem on the relation between spectra
of sample and true covariance matrices is first presented (under a simplest setting)
with full proofs. In Section 4, a generalized linear regression with random predic-
tors is studied and principle parts of the regression quadratic risk are singled out.
In Section 5, a generalized class of linear discriminant functions is considered, and
the problem of estimation of principle parts of the classification error is considered
under i.d.a.. Section 6 is of a summarizing character: it is shown that principal
parts of traditional quality functions of regularized multivariate procedures depend
only on two moments of variables and can be evaluated (with an accuracy to the re-
mainder terms of i.d.a.) under the assumption of variables normality. In Section 6,
the upper estimates of the inaccuracy produced by the normality assumption are
found. The theory developed in Sections 1–6 shows that, for a number of regular-
ized versions of multivariate problems for sufficiently wide class of populations and
for high dimension of variables, (1) quality functionals weakly depend on details
of distributions, (2) reliable estimators of quality functions can be suggested, and
thus, (3) a possibility is provided of the comparison of procedures and of search for
approximately unimprovable solutions.

We introduce the necessary notations. Let S denote an n-dimensional popula-
tion. Vectors x from S are called observations. Denote Σ = cov(x,x). We consider
samples X = (x1, . . . ,xN ) from S of size N and use sample means and matrices

(0.1) x̄ = N−1
n∑

m=1

xm, C = N−1
N∑
m=1

(xm − x̄)(xm − x̄)T

and

(0.2) S = N−1
N∑
m=1

xmxTm



THEORY OF ESSENTIALLY MULTIVARIATE STATISTICAL ANALYSIS 3

(matrices S can have the sense of sample covariance matrices if the expected values
of x are known a priori.) We denote the expectation value operator by E and
the variance function by var(.). We use the indicator function ind(.) also for non-
random inequalities. We denote vectors by semi-boldface symbols, the transposed
vector-column by the upper symbol “T”. The absolute value of a vector denote its
length, and the square of a vector denotes the square of its length. We only use the
spectral norms of matrices. Let I denote the identity matrix.

1. Method of increasing dimension in multivariate analysis problems

The essentially multivariate approach in statistics was developed first in 1968–
1988 for the discriminant analysis. We describe the progress achieved by 1983. Let
us set the discriminant problem as follows.

Two populations are considered Sν , ν = 1, 2, and samples Xν = (x1, . . . ,xNν )
from Sν , ν = 1, 2. A sample discriminant function w(x) = w(x,X1,X2) is con-
structed and a threshold c is fixed. The discrimination rule is of the form w(x) > c
against w(x) 6 c. Probabilities of errors (conditional under fixed samples) are

(1.1) α1 = P
(
w(x) 6 c | x ∈ S1

)
, α2 = P

(
w(x) > c | x ∈ S2

)
.

For normal populations Sν = N(µν ,Σ), ν = 1, 2, with a common non-degenerate
known covariance matrix Σ, the minimum of (α1 + α2)/2 is provided by the An-
derson discriminant function

w0(x) = (µ1 − µ2)TΣ−1
(
x− (µ1 + µ2)/2

)
with the threshold c = 0.

The minimum is attained for α1 = α2 = Φ
(−√J/2), where

J = (µ1 − µ2)TΣ−1(µ1 − µ2) is the square of the “Mahalanobis distance”. The
standard discriminant procedure uses the “plug-in” Fisher–Anderson–Wald sample
discriminant function

(1.2) w(x) = (x̄1 − x̄2)TC−1
(
x− (x̄1 + x̄2)/2

)
,

where x̄1 and x̄2 are sample mean vectors and

(1.3) C = (N − 2)−1

[ N1∑
m=1

(xm − x̄1)(xm − x̄1)T +
N∑

m=N1+1

(xm − x̄2)(xm − x̄2)
]T

is an unbiased estimator of Σ and a through numeration of sample vectors is used,
i. e., vectors of the sample X1 are numerated first and then vectors of X2, N =
N1 + N2. Wald [9] proved the consistency of this procedure for a non-degenerate
matrix Σ as N1 →∞ and N2 →∞.

In view of a deficiency of this procedure (matrix C may be degenerate, and the
inverse matrix certainly does not exist for n > N), A. N. Kolmogorov in 1968 was
interested in an investigation of the dependence of probability errors on sample
sizes. He solved the following problem. Suppose matrix Σ is the identity. Let us
consider a simplified discriminant function w1(x) = (x̄1 − x̄2)T

(
x − (x̄1 + x̄2)/2

)
.
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This function is distributed normally and this leads to the error probabilities of
the form Φ(−G2/D), where random G and D have a non-central χ2-distribution.
To isolate principle parts of G and D, A. N. Kolmogorov offered to consider not a
single n-dimensional problem, but a sequence P = {Pn} of discriminant problems

(1.4) Pn =
(
S1, S2, N1, N2, X1, X2, w(x), α1, α2

)
n
, n = 1, 2, . . .

(we do not write out the subscripts n for arguments of Pn) of the analysis of ob-
servations x ∈ Rn, where the discriminant function w(x) is constructed by samples
X1 and X2 of size N1 and N2 from populations S1 and S2, and α1 and α2 are
probabilities of errors. Supposing that Sν = N(µν , I) , ν = 1, 2, and the discrim-
inant function w(x) = w1(x) with c = 0 for each n, (µ1 − µ2)2 → J0 > 0 and
n/Nν → λν > 0, ν = 1, 2, as n→∞, he found that α1 → Φ

(−J0/2
√
J0 + λ1 + λ2

)
in probability (the limit of α2 is identical.)

In [6] L.D.Meshalkin deduced the same expression of the limit error of discrim-
ination for populations different from normal ones under an assumption that the
populations are approaching each other in the parameter space (the contiguity as-
sumption) and the observation vector components are independent. In [10] this
result was generalized. In [11] it was shown that the same expression of the limit
errors also remains valid for dependent normal variables if the inverted sample co-
variance matrix is used but this matrix has a special structure and this structure is
known a priori. Under the setting of [10], a number of investigations were carried
out with the purpose to improve the discrimination procedure for contigual popula-
tions with increasing number of blocks of independent variables (see [12], [14], [15].)
These papers present a theory of weighting and selection of independent variables
in the discrimination problem.

In 1970 Yu. N.Blagoveschenskii and A. D.Deev investigated probability errors
of the standard sample discriminant procedure under i.d.a. for two normal pop-
ulations with coinciding unknown covariance matrices. In [3] and [4], an asymp-
totic expansion of the function EP

(
w(x) < c, x ∈ S1

)
was found for w(x) of the

form (1.2). The main result is as follows. Suppose that a sequence P = {Pn} of
problems (1.4) is given, in which sample discriminant function w(x) is calculated
and the discrimination rule w(x) > c against w(x) 6 c is used.

Theorem 1.1 [3]. Let P satisfy the following conditions.
(A) For each n the sets are normal N(µν ,Σ), ν = 1, 2, with a common non-

degenerate covariance matrix Σ.
(B) As n→∞ the limit exists lim (µ1 − µ2)TΣ−1(µ1 − µ2) = J .
(C) Let Nν → ∞ as n → ∞, ν = 1, 2, in such a way that n/Nν → λν > 0,

ν = 1, 2, and λ def= λ1λ2/(λ1 + λ2) < 1.
Then

α1 → Φ
(−
√

1− λ (J − λ1 + λ2 − 2c)/2
√
J + λ1 + λ2

)

in probability (the limit value of Eα2 is symmetric.)

It is easy to see that minimum of the limit value (α1 + α2)/2 is attained for the
threshold c = (λ1 − λ2)/2, i. e., in the classification with a preference of the lesser
sample. It was obvious that by taking into account terms of the order of n/Nν ,
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ν = 1, 2, we have a possibility to construct improved discriminant (and other)
procedures.

If populations are normal, matrix (1.3) is the Wishart matrix. For these, the en-
tries distribution density as well as the eigenvalue density are well known [16], [17],
and can be written in the form of analytical expressions. Unfortunately, efforts to
use these expressions under i.d.a. were unsuccessful. In [5] for the Wishart matrices
W with Σ = I some recurrent relations were found (by an explicit evaluation) defin-
ing the limit momenta Mk = plimn→∞ n−1 tr Wk, k = 1, 2, . . . ; and the existence
of a limit distribution function

F (u) = plim
n→∞

n−1
n∑

i=1

ind(λi 6 u),

was proved, where λ1, . . . , λn are eigenvalues of W. Moreover, in [5] an attempt
was made to numerically recover the function F (u) using the momenta {Mk}.
It is noteworthy that this function was found in an analytical form earlier (as a
consequence of Theorem 1 from [18], see below). For x ∼ N(0,Σ), the moments Mk

were calculated under i.d.a. in [8] (by differentiation with respect to parameters.)
For y > 0, the formula was deduced Mk = (Lk)11/y, k = 1, 2, . . . , where an infinite
matrix L has entries Lij that are equal to zero for j < i−1; to 1 for j = i−1; and to
yΛj−i+1 for j > i− 1, i, j = 1, 2, . . . , where by definition Λk = limn→∞ n−1 tr Σk,
k = 1, 2, . . . .

In [8] the principle parts of functions En−1 tr(I + tC)−1 were found for normal
x ∼ N(0,Σ) under i.d.a., where C of the form (1.3) are Wishart matrices. Let us
cite the main result.

Let P = {Pn} be a sequence of statistical problems

(1.5) Pn = (S,Σ, N,X,C)n, n = 1, 2, . . . ,

in which sample covariance matrices C of the form (1.3) are calculated over samples
X of size N from populations S with cov(x,x) = Σ, and the limit spectrum of C
is studied (we do not write out the subscripts n of arguments in Pn.)

Theorem 1.2 [8]. Suppose the sequence P satisfies the following conditions :
(A) for each n in Pn, the sets S are normal (0,Σ);
(B) for each n all eigenvalues of Σ lie on a segment [c1, c2], where c1 > 0 and

c2 do not depend on n;
(C) for any t > 0 as n→∞ in P

n−1 tr(I + tΣ)−1 → η(t);
(D) the limit exists y = limn→∞ n/N > 0.
Then for any t > 0 the limit in probability exists

h(t) = plim
n→∞

n−1 tr(I + tC)−1,

and the equation is satisfied

(1.6) h(t) = η
(
ts(t)

)
, where s(t) = 1− y + yh(t).
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The importance of the equation (1.6) is that it allows to connect limit spectral
functions of sample covariance matrices with spectral functions of unknown true
covariance matrices.

We note that moments Mk can be evaluated by differentiating the function h(t).
For Σ = I, n = 1, 2, . . . the equation (1.6) is reduced to the quadratic equation that
was found earlier in [18] (see below, Section 2).

2. Limit spectral theory of sample
covariance matrices of increasing dimension

This theory is a development of the theory of random matrices that was created
first for some applications in theoretical physics. We present the progress achieved
in investigations by V. A. Marchenko and L. A. Pastur, V. L. Girko and the author of
this paper in 1967–1995. In 1947 E. Wigner discovered the convergence of spectral
functions of random self-adjoint operators represented by random Gram matrices of
the increasing dimension of the form S defined by (0.2) that have the properties of
standard sample covariance matrices for normal distributions and obtained a limit
spectral density f(u) proportional to

√
(u2 − u)(u− u1), 0 6 u1 6 u2 (“semicircle

law”). In 1967 V. A. Marchenko and L. A. Pastur [18] investigated limit spectra
of self-adjoint operators of the form of a sum A + S, where A are non-random
Hermitian matrices of increasing dimension n with convergent spectral functions,
and S are random matrices (0.2) for Σ = I, and obtained an equation connecting
limit spectral functions of matrices A and A + S. We cite one of their results.

Suppose a sequence P = {Pn} of problems is considered Pn = (S,Σ, N,X,S)n,
n = 1, 2, . . . , of the analysis of spectra of true covariance matrices Σ = cov(x,x) by
sample covariance matrices S of the form (0.2) that are calculated over a sample X
of size N from S (we do not write out the subscripts n for matrices.) Denote

hn(t) = n−1 tr(I + tS)−1, Fn(u) = n−1
n∑

i=1

ind(λi 6 u),

where λ1, . . . , λn are eigenvalues of S.

Theorem 2.1 (a special case of Theorem 1 from [18]). Suppose P satisfies the
following assumptions.

(A) For each n the observation vectors x from S are such that Ex = 0 , Σ = I,
and all fourth moments of all components of the vector x exist and are uniformly
bounded in P.

(B) The distribution of x is symmetric with respect to a permutation of the
components of x and invariant with respect to the replacement of x by −x. This
means that the components of x = (x1, . . . , xn) satisfy the relation

Exixjxkxl = an(δijδkl + δikδjl + δilδjk) + (bn − 3an)δijδjkδkl,

i, j, k, l = 1, . . . , n (here δ is the Kronecker symbol), an = Ex2
1x

2
2, bn = Ex4

1.
(C) The limits exist limn→∞ an and limn→∞ bn.
(D) The limit exists limn→∞ n/N = y > 0.
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Then
1◦ for any t > 0, the limit exists plimn→∞ hn(t) = h(t);
2◦ for u > 0 , Fn(u) P−→ F (u) almost everywhere;

3◦ for Re z < 0 and for Im z 6= 0, h(z) =
∫

(1− zu)−1 dF (u);

4◦ the equality is valid h(t)
(
1 + ts(t)

)
= 1, where s(t) def= 1− y + yh(t), t > 0.

Remark 1. The conditions (B) are satisfied for isotropic distributions, and, in par-
ticular, for normal distributions N(0, I). In this case, the limit spectrum density of
matrices S equals dF (u)/du = (2πyu)−1

√
(u2 − u)(u− u1) for u1 6 u 6 u2, where

u1 = (1 −√y)2, u2 = (1 +
√
y)2, and equals 0 for 0 < u < u1 and for u > u2; for

y > 1 the function F (u) has a jump at the point u = 0 that is equal to 1− y−1.

Remark 2. Suppose the observation vectors are normal (0n, In), n = 1, 2, . . . . Then,
a linear transformation of variables exists transforming matrices C of the form (0.1)
to matrices S of the form (0.2) (with N lesser by unit); and Theorem 1 from [18]
is also valid for matrices C of the form (0.1).

The subsequent success of the i.d.a. application in the theory of multivariate
analysis was provided by the spectral function method that was developed in the
limit spectrum theory of random matrices of increasing dimension by V. L. Girko
(monographs [19] and [20].) In a series of investigations [19]–[22], etc., limit spectral
properties of matrices S of the form (0.2) were studied. It was proved that the
normed trace of the resolvent of matrices S converges almost surely; the convergence
rate was investigated, limit (semicircle) spectra were obtained, and it was shown
that these spectra stay within finite boundaries with the probability 1. This class
of matrices and these results can be applied in some problems of theoretical physics
and theory of neuron nets dynamics (A. Khorunzhy, G. Rodgers, A. Boutet de
Monvel, V. Vasiliuk et al.) We note that matrices of the form S can have the
sense of sample covariance matrices under a special setting of statistical problems
if expectation values of variables are known a priori (or equal 0.)

The methods of [19]–[22] were applied to standard sample covariance matrices C
of the form (0.1) in [23]–[29]. We illustrate the use of spectral function method for
the investigation of sample covariance matrices spectra in the proof of Theorem 3.1
below.

The general approach is as follows. First, for some functionals depending on the
resolvent of matrices S, C and vectors x, the decrease of variances is established.
This fact is proved using some martingale lemmas (see in Sections 3 and in [20].)
We use the following simple statement.

Lemma 2.1 (a consequence of the Burkholder inequality, [30; Chapter 7]). Let
f(X) be a function of a sample X = (x1, . . . ,xN ), and let fm(X) be not depending
on xm functionally, m = 1, . . . , N . Suppose two first moments of these functions
exist.

Then var f(X) 6
∑N
m=1 E

(
f(X)− fm(X)

)2.

One of independent vectors is excluded, and expectation values of functionals
involving the resolvent of sample covariance matrices are connected by a functional
relation with expectation values of functionals dependent on Σ. Then, in the same
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way as in Theorem 3.1, the basic spectral equation is derived relating limit spectra
of matrices S or C to limit spectra of Σ. The transition to limit spectra is performed
by using statements of the following type (Theorem 3.2.4 in [20]).

Lemma 2.2 [20]. Let us consider a sequence of non-negatively definite symmetric
random matrices Sn of the form (0.2) and of functions hn(t) = n−1 tr(I + tSn)−1

and Fn(u) = n−1
∑n
i=1 ind(λi 6 u), where λi are eigenvalues of Sn, i = 1, . . . , n,

n = 1, 2, . . . .
The convergence hn(t) → h(t) for each t > 0 in probability is necessary and

sufficient for the weak convergence Fn(u) → F (u), u > 0, and for the validity of

the relation
∫

(1 + tu)−1 dF (u) = h(t), t > 0.

We present the result of the investigation of limit spectral functions of sample
covariance matrices obtained in [23].

Let P = {Pn} be a sequence of statistical problems

(2.1) Pn = (S,Σ, N,X,C)n, n = 1, 2, . . . ,

of the analysis of spectra of matrices Σ = cov(x,x) by sample matrices C of the
form (0.1) calculated over samples X of size N (we do not write out the subscripts
n for arguments of (2.1))

Theorem 2.2 [23]. Suppose P satisfies the following requirements (with account
of [28]; in [23], the assumptions are more complicated.)

(A) For each n, Ex = 0, and there exist all fourth moments of projections
of x onto arbitrary non-random axes uniformly bounded in P. For each n, all
eigenvalues of matrices Σ lie on a segment [c1, c2], where the magnitudes 0 < c1 6 c2
do not depend on n.

(B) The values sup‖Ω‖=1 var(xTΩx/n)→ 0, where Ω are non-random symmetric
non-negatively definite matrices with unit (spectral) norm.

(C) limn→∞ n/N = y > 0.
(D) For u > 0 almost everywhere

n−1
n∑

i=1

ind(λi 6 u)→ F0(u)

uniformly with respect to u, where λ1, . . . , λn are eigenvalues of Σ.
Then

1◦ for t > 0 uniformly in the square mean

n−1 tr(I + tS)−1 → h(t) and n−1 tr(I + tC)−1 → h(t);

2◦ for u > 0 almost everywhere

n−1
n∑

i=1

ind(λi 6 u)→ F (u)

uniformly in u, where λ1, . . . , λn are eigenvalues of S or C;
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3◦ for t > 0

(2.2) h(t) =
∫

(1 + tu)−1 dF (u) =
∫ (

1 + ts(t)u
)−1

dF0(u),

where s(t) = 1− y + yh(t);
4◦ the analytical continuation h(z) of h(t) to the plane of complex z satisfies

the Gölder condition
∣∣h(z)− h(z′)

∣∣ < c|z − z′|ζ , where c > 0 and ζ > 0;

5◦ for each u > 0 as ε→ +0 there exists the limit density

dF (u)
du

= (πu)−1 lim Imh(−u−1 − iε);

6◦ for 0 < u < c1(1−√y)2 and for u > c2(1 +
√
y)2, the density

dF (u)
du

= 0;

7◦ for y > 1 the function F (u) has a jump at the point u = 0 equal to 1−1/y.

The limit spectral equations coincide for matrices S and C, but the rate of
convergence may be different. Also, the principle parts of functions depending on
vectors x are different for these matrices.

The equations of the type (2.2) relating limit spectrum distribution of random
matrices to spectra of their expectation values are called “canonic” in [20] and [26].
They demonstrate a fundamental property of spectra of large random matrices:
under i.d.a., their smooth limit spectral functions prove to be insensitive to moments
of order higher than 2 and, consequently, can be evaluated under the assumption
of population normality.

In investigations by V. L. Girko [24]–[26], methods of spectral theory of random
matrices of increasing dimension [19], [20] were applied to the investigation of spec-
tral properties of standard sample covariance matrices C. The main results are
obtained under an assumption of the independence of observation vector compo-
nents (this condition is weakened and replaced by requirements to parameters in
the monograph [26], 1995.) In particular, theorems were proved establishing the
convergence of spectral functions of matrices C under i.d.a. and limit equations
were derived for matrices Σ and C; estimators were constructed for the normed
trace of the resolvent of matrices Σ and their asymptotic normality proved; finite
boundaries of limit spectra of sample covariance matrices were studied. Let us cite
three statements proved in [26], 1995.

Let P = {Pn} be a sequence of statistical problems (2.1) of the investigation of
spectral functions of matrices Σ of increasing dimension by the observed matrices
C of the form (0.1). We assume the following.

(A) For each n in P Ex = 0, matrices Σ are non-degenerate, and vectors
ξ = Σ−1/2x in S have independent components.

(B1) In P, components ξi of vectors ξ satisfy the Lindeberg condition: for each
τ > 0 as n→∞

n−1
n∑

i=1

Eξ2
i ind

(|ξi| >
√
n τ
)→ 0.
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(B2) For each n in P, for all components x, there exist moments of the order
higher than the fourth uniformly bounded for n = 1, 2, . . . ; all eigenvalues of Σ lie
on a segment [c1, c2], where c1 > 0 and c2 do not depend on n.

(C) In P as n→∞, the ratios yn
def= n/N → y > 0.

Theorem 2.3. Suppose conditions (A), (B1) and (C) are satisfied in P = {Pn}.
Then

1◦ for each n and each t > 0 the system of equations

hn(t) = n−1 tr
(
I + tsn(t)Σ

)−1
, sn(t) = 1− yn + ynhn(t)

is uniquely solvable;
2◦ for each t > 0 as n → ∞ hn(t) − ĥn(t) → 0 in probability, where ĥn(t) =

n−1 tr(I + tC)−1;
3◦ for u > 0 in probability

n−1
n∑

i=1

ind(λi 6 u)− Fn(u)→ 0,

where λi, i = 1, . . . , n, are eigenvalues of C, and the non-random distribu-
tion function Fn(u) satisfies the equation

∫
(1 + tu)−1 dFn(u) = hn(t), t > 0.

Theorem 2.4. Suppose conditions (A), (B2) and (C) are satisfied in P = {Pn}.
Then for any t > 0 duly centered and normed values ĥn(t) have a distribution

function that converges as n→∞ to the standard normal law distribution function.

Theorem 2.5. Suppose conditions (A), (B2) and (C) are satisfied in P = {Pn}.
Then the minimum and maximum eigenvalues λ1 and λ2 of matrices C in P are

such that as n→∞ the differences λν − αν → 0 in probability, ν = 1, 2, where

αν = z−1
ν

[
1 + zνN

−1 tr Σ(I− zνΣ)−1
]
, ν = 1, 2,

and z1 > 0, z2 > 0 are the maximum and minimum roots of the equation

z2N−1 tr Σ2(I− zΣ)−2 = 1.

For Σ = I from this equation, one gets the boundaries that are mentioned in a
remark to Theorem 2.1.

3. Principal parts of the resolvent and spectral
functions of sample covariance matrices

In this section, refining results of [27] and [28], we pass from limit formulas of
the asymptotic spectral theory of sample covariance matrices developed before 1988
([23]–[26]), to relations between principal parts of spectral functions that are valid
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for any fixed dimension and any fixed sample size. We will show that it is possible
to isolate principal parts of spectral functions with an accuracy that is defined by
two parameters depending on the first four moments of variables. We will obtain
upper estimates of the remainder terms accurate to absolute constants.

It is well-known that limit formulas of the theory of spectral properties of sample
covariance matrices of increasing dimension are only valid for a restricted depen-
dence between components of the observation vectors x. In papers [18] and [23],
these restrictions have a form of tensor relations for moments of variables. The
theory by V. L. Girko [19]–[20] is based on an assumption of the independence of
components of x. In the author’s paper [27] of 1994, it was found that, for Ex = 0,
the restricted dependence conditions can be reduced to restrictions on two param-
eters: on the maximal fourth moment of a projection of x onto non-random axes
(defined by vectors e of unit length)

(3.1) M = sup
|e|=1

E(eTx)4

and a special measure of the quadratic from variance

(3.2) ν = sup
‖Ω‖=1

var(xTΩx/n),

where Ω are non-random symmetric non-negatively definite matrices of the unit
spectral norm. In [28], the theory of spectral properties of sample covariance ma-
trices was developed for finite n and N . Inequalities of paper [28] are suffice to
deduce limit spectral equations of the theory [19]–[26] as N → ∞ if M < ∞ and
ν → 0.

Method of the isolation of i.d.a. principal terms. To illustrate basic
ideas of the theory and its mathematical tools, we first present the essentially
multivariate approach with all calculations for an example of the study (i. e., proof
of Theorem 3.1, see below) of the spectral function ho(t) = En−1tr Ho(t), where
Ho(t) = (I + tS)−1. This function is fundamental for [19]–[26]. We consider it
for more simple covariance matrices S of the form (0.2) calculated over samples
X = {xm}, m = 1, . . . , N . We restrict populations S with only two assumptions:
that Ex = 0 and that all fourth moments of the vector x exist. For simplicity,
assume that M > 0. Then we can denote γ = ν/M . Also, we denote y = n/N ,
so(t) = 1− y + yho(t) and τ =

√
M t.

Similiarly to [22] and [28], we use the method of one-by-one exclusion of inde-
pendent vectors. Let us single out the vector xm from X. Define

Sm = S−N−1xmxTm, Hm
o = (I + tSm)−1,

ϕm = xTmHm
o xm/N, ψm = xTmHoxm/N,

where m = 1, . . . , N . It is easy to verify the identities

Ho = Hm
o − tHm

o xmxTmHo/N, Hoxm = (1− tψm)Hm
o xm,(3.3)

(1 + tϕm)(1− tψm) = 1,
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m = 1, . . . , N . Obviously,

(3.4) |eTHoxm| 6 |eTHm
o xm| and 0 6 tψm 6 1, m = 1, . . . , N.

We also verify that

1− tEψm = 1− tE tr HoS/N = 1− y tr(I−Ho)/n = so(t),

m = 1, . . . , N , and that so(t) > (1 +
√
M ty)−1.

Lemma 3.1. For t > 0 the variance var(eTHoe) 6 τ2/N .

Proof. We estimate the variance using Lemma 2.1. Excluding the dependence on
xm with identities (3.3) and (3.4), we find that

var(eTHoe) 6 t2N−2
N∑
m=1

E(eTHm
o xm)2(xTmHm

o e)2 6 t2N−1E(eTHm
o xm)4.

In view of the independence of Hm
o from xm, the right-hand side is not greater than

t2N−1M = τ2/N . The lemma is proved.

Denote δ = 2τ2y2(γ + τ2/N).

Lemma 3.2. For t > 0 and N > 1 var(tψm) 6 δ, m = 1, . . . , N .

Proof. We single out one of sample vectors xm from Ho using the first of the
identities (3.3). Denote ∆ϕm = ϕm − Eϕm, ∆ψm = ψm − Eψm. From the last of
identities (3.3), it follows

(1 + tϕm)t∆ψm = (1− tEψm)t∆ϕm + t2E∆ϕm∆ψm.

We square these expressions, calculate expectation values, and obtain

var(tψm) 6 var(tϕm) + var(tϕm) var(tψm),

where tψm 6 1 and, consequently, var(tψm) 6 2 var(tϕm). In order to apply
Lemma 2.1, we introduce the parameter t′ = (1−N−1)t. Then Hm

o = (I + t′S′)−1,
where S′ is a matrix of the form S for a sample of size lesser by unit (without xm).
In view of the independence of S′ from xm, we obtain

var(tϕm) = var
[
txTm(EHm

o )xm/N
]

+ t2E(x2
m/N)2 var(eTHm

o e),

where e is a unit vector directed along xm, and the second variance in the right-
hand side is conditional under fixed e. Here the first summand is not greater than
t2y2ν = τ2γ. In the second summand, the variance is not greater Mt′2/(N − 1) 6
Mt2/N = τ2/N by Lemma 2.1, and E(x2

m/N)2 6My2. Thus, the second summand
is not greater than τ4y2/N . This proves the lemma.
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Theorem 3.1. For t > 0

(3.5) ho(t) = n−1 tr
(
I + tso(t)Σ

)−1 + ω,

where |ω| 6 τ(
√
δ + τ/N).

Proof. We choose a vector xm ∈ X. In view of (3.3)

tHoxmxTm = t(1− tψm)Hm
o xmxTm.

Here, the expectation value of the left-hand side is tEHoS = I − EHo. In the
right-hand side, 1− tψm = so(t)−∆m, where ∆m is the deviation of tψm from the
expected value, and EHm

o xmxm = EHm
o Σ. We find that

I−EHo = tso(t)EHm
o Σ− tEHm

o xmxTm∆m.

We substitute the expression for Hm
o in terms of Ho from (3.3). The equation can

be rewritten as follows
I = EHo

(
I + tso(t)Σ

)
+ Ω,

where Ω = t2s(t)EHm
o xmxTmHoΣ/N − tEHm

o xmxTm∆m. Multiplying from the left
by R =

(
I + tso(t)Σ

)−1, we calculate the trace and divide by n. We find that
n−1 tr R = h(t) + ω, where

ω = t2so(t)E|xTmHoΣRHm
o xm/n|/N + tE|xTmRHm

o xm∆m/n|.
In the first summand, 0 6 so(t) 6 1. We estimate the matrix expressions by norm,
apply the Schwarz inequality and obtain

|ω| 6 t2‖Σ‖Ex2
m/nN + t

[
E(x2

m/n)2E∆2
m

]1/2 6 τ2/N + τ
√

var tψm.

The statement of the theorem follows.

The principle parts of (3.5) connect spectra of sample covariance matrices with
spectra of true covariance matrices and lead to “canonic” equations of the limit
spectral theory of sample covariance matrices (see [23]–[26]).

Example. Let Σ = I. The principle parts of (3.5) produce the quadratic equation
ho(t)

(
1+tso(t)

)
= 1 for ho(t) = En−1 tr(I+tS)−1. Using analytical continuation of

the function ho(t), one can calculate the spectral function F (u) = n−1
∑

P(λi 6 u),
where the sum is extended over all eigenvalues λi, i = 1, . . . , n, of the matrix S. In
the limit form, the equation (3.5) was first obtained in [18] (see Section 2.)

Restricted dependence condition. We note that the boundedness of mo-
ments M essentially restricts the dependence of variables. Indeed, let Σ be a cor-
relation matrix with the Bayes distribution of correlation coefficients uniform on
the segment [−1, 1]. Then the Bayes mean EM > En−1 tr Σ2 > (n+ 2)/3. In case
of N(0,Σ) with matrix Σ of entries 1, the value M = 3n2. Let us show that the
equation (3.5) can be established with accuracy to terms, in which the moments
are restricted only in a set.

We denote

(3.6) Λk = n−1 tr Σk, Qk = E(x2/n)k, W = n−2 sup
‖Ω‖=1

E(xTΩx′)4,

where t, k > 0, x and x′ are independent vectors from S, and Ω are non-random
symmetric non-negatively definite matrices of unit spectral norm.
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Theorem 3.2. For t > 0

(3.7) ho(t) = n−1 tr
(
I + ts0(t)Σ

)−1 + ω,

where ω2/2 6
[
Q2y

2(ν +Wt2/N) +W/N2
]
t4.

Example. Let x ∼ N(0,Σ). Denote Λk = n−1 trΣk, k = 1, 2, . . . . For normal x

M = 3‖Σ‖2, Q2 = Λ2
1 + 2Λ2/n, W = 3(Λ2

2 + 2Λ4/n), ν = 2Λ2/n.

Now, let Σ = I + ρE, where E is matrix of entries 1, 0 6 ρ 6 1. Then M =
3(1 + nρ)2, Λ1 = 1 + ρ, Λ2 = 1 + 2ρ + nρ2, Λk 6 ak + bkρ

knk−1, where ak and
bk are positive numbers independent on n, and all Qk < c, k = 1, 2, . . . . For
ρ = n−3/4 and n → ∞, the values M → ∞, whereas Λ3, Λ4 and Q3 remain
bounded, ν = O(n−1), and the condition ω → 0 is fulfilled.

Main results. We present some statements proved in [27] and [28]. In these pa-
pers, the principle parts are singled out not only for the function ho(t) = n−1 tr Ho

but also for separate matrix elements of the resolvent Ho and H of matrices S
and C.

To simplify notations of the remainder terms, we denote

(3.8) ε =
√
γ + 1/N, clm = clm(t) = amax(1, τ l) max(1, λm),

l,m = 1, . . . , 9, where a are absolute constants (for brevity, we omit the parenthesis
in clm(t) denoting the dependence on t.)

Theorem 3.3. For t > 0

(3.9) EHo =
(
I + tso(t)Σ

)−1 + Ωo,

where ‖Ωo‖2 6 c62ε
2 and var eTHoe 6 τ2/N .

In [28] it was shown that the difference between resolvent Ho and H effects only
remainder terms. We obtain the following statement.

Theorem 3.4. For t > 0

(3.10) EH =
(
I + ts(t)Σ

)−1 + Ω,

where ‖Ω‖2 6 c63ε
2, and var(eTHe) 6 aτ2/N , where a is an absolute constant.

The statistics ĥo(t) = n−1 tr(I + tS)−1, ŝo(t) = 1 − y + yĥo(t), and ĥ(t) =
n−1 tr(I + tC)−1 can be offered as estimators of functions ho(t), so(t), and h(t).

Theorem 3.5. For t > 0

(1) E
∣∣ĥo(t) + ho(t)

∣∣2 6 τ/(nN);
(2) E

∣∣ŝo(t)− so(t)
∣∣2 6 c12/(nN);

(3) E
∣∣ĥ(t)− h(t)

∣∣2 6 c20ε
2.

As an alternative estimator of the function so(t), the statistic Ψ(t) = xTH(t)x
can be offered:
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Theorem 3.6. For t > 0 the statistic s̃o(t) =
(
1 + tΨ(t)

)−1 is an estimator of
so(t) such that

Es̃o(t) = so(t) + o, where |o| 6 c42ε, and var s̃o(t) 6 c64/N.

Theorem 3.4 is a central point of the theory of essentially multivariate analysis.
Using it, one can prove and strengthen theorems on “canonic” equations of the
theory by V. L. Girko [24]–[26] establishing the relation between spectra of sample
and true covariance matrices (by tending γ to zero), approximately calculate spectra
of matrices C in terms of the parameters, and construct “G-estimators” of spectral
functions of matrices Σ with guaranteed bounds of inaccuracy. From this theorem,
the main results of [8] and [27]–[29] follow. The significance of Theorem 3.4 is that
it presents a basement for the construction of improved methods of multivariate
analysis (see Sections 4, 5, and 6.)

4. Reduction of the quadratic risk for linear
regression with a large number of random predictors

In this section we present some new results that are obtained by the application
of methods developed in Sections 2 and 3:

1◦ we consider a class of generalized regularized sample regression procedures
depending on an arbitrary function;

2◦ using i.d.a., we isolate the principle part of the quadratic risk for this class of
regressions and construct its estimator;

3◦ we obtain upper estimates of the inaccuracy produced by using the i.d.a.
Suppose an (n+1)-dimensional population S is given, in which observations are

pairs (x, y), where x = (x1, . . . , xn) is a vector of predictors and the scalar y is a
response.

We restrict the populations P with the following requirements only: the expec-
tation values Ex = 0, Ey = 0, and there exist all fourth moments of components
of x, the fourth moment of y, and all fourth moments of their products. Let
Ex2 > 0 (non-degenerate case.) In this section, we denote M4 = supe E(eTx)4,
M8 = E(x2/n)2y4 and introduce two parameters

M = max(M4,
√
M8,Ey4),(4.1)

γ = sup
Ω

var(xTΩx/n)/M,(4.2)

where (and in the following) e are non-random vectors of unit length, and Ω are
symmetrical non-negatively definite matrices with unit spectral norm. We consider
linear regression y = kTx + l + ∆, where k ∈ Rn and l ∈ R1. The problem is to
minimize the quadratic risk R = E∆2 by the best choice of k and l calculated over
a sample

{
(xm, ym), m = 1, . . . , N

}
from S.

Denote λ = n/N , a = Ex, a0 = Ey, Σ = cov(x,x), σ2 = var y, g = cov(x, y).
If σ > 0 and the matrix Σ is non-degenerate, then the a priori coefficients

k = Σ−1g and l = a0 − kTa provide the minimum of R equal to R = Ro =
σ2 − gTΣ−1g = σ2(1− r2), where r is the multiple correlation coefficient.
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We start from the statistics

x = N−1
N∑
m=1

xm, y =
N∑
m=1

ym,

σ̂2 = N−1
N∑
m=1

(ym − y)2 S = N−1
N∑
m=1

xmxTm,

C = N−1
N∑
m=1

(xm − x)(xm − x)T and ĝ = N−1
N∑
m=1

(xm − x)(ym − y).

The standard “plug-in” procedure with k̂ = C−1ĝ and l̂ = y− k̂Tx has well-known
deficiencies: this procedure does not guarantee the risk minimum, is degenerate in
case of multi-collinear data, (when matrix C is degenerate) and is consistent not
uniformly in dimension [31].

We consider the regression y = k̂Tx + l̂ + ∆, where k̂ and l̂ are calculated over
a sample with the “plug-in” constant term l̂ = y − k̂Tx. Its quadratic risk is

(4.3) R = E∆2 = R1 + E(
◦
y − k̂T

◦
x)2 = (1 + 1/N)R1,

where

(4.4) R1 def= E(σ2 − 2k̂Tg + k̂TΣk̂),

◦
y = y − a0 and

◦
x = x− a.

Let us calculate and minimize R1. We consider the following class of generalized
and regularized regressions. Let Ho = (I+ tS)−1 and H = (I+ tC)−1 be resolvents
of matrices S and C, where (as above) I is the identity matrix. We choose the
coefficients k̂ (everywhere in the following) from a class K of statistics of the form

k̂ = Γĝ, where matrices Γ =
∫
tH(t) dη(t), and η(t) are functions of variation not

greater that 1 on [0,∞) having a sufficient number of moments

(4.5) ηk
def=
∫
tk |dη(t)|, k = 1, 2, . . . .

We note that the step-like function η(t) with a step 1 corresponds to the “ridge
regression”, see [31]. The regression equation with coefficients k̂ ∈ K can be called
a generalized ridge regression. The value (4.4) depends on η(t): R1 = R1(η), and
for k̂ ∈ K,

(4.6) R1(η) = σ2 − 2E
∫
tgTH(t)ĝ dη(t) + E

∫∫
D(t, u) dη(t) dη(u),

where
D(t, u) def= tuĝTH(t)ΣH(u)ĝ.
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Since all arguments in R1(η) are invariant with respect to a displacement of the
coordinate origin, we set a = Ex = 0 and a0 = Ey = 0. Similiarly to [28], we isolate
principle parts of functionals under i.d.a. and obtain upper estimates of remainder
terms with an accuracy to absolute constants. To be more concise in estimates of
the remainder terms, we use the notations

τ =
√
Mt, ε =

√
γ + 1/N,

clm = clm(t) = αmax(1, τ l) max(1, λm), α, l,m > 0,

where α, l and m are numbers (in the following, we do not write out the parenthesis
with the dependence on t in coefficients clm(t).) It is easy to verify that

E(x2)2 6M, E(x2)2 6Mλ2, ‖Σ‖2 6M, g2 6M,

E(ĝ2)2 6 2M2(1 + λ)2, E(xT ĝ)2 6 3M3/2(1 + λ)2.

Similiarly to Section 3, we first study properties of the Gram matrices S and its
resolvent Ho. We consider functions

ho(t) = n−1E tr Ho(t) and so(t) = 1− λ+ λho(t).

These functions have the property

1− so(t) = tN−1E tr Ho(t)S and (1 + τλ)−1 6 so(t) 6 1.

By virtue of Theorem 3.3

EHo(t) =
(
I + tso(t)Σ

)−1 + Ωo,

where ‖Ωo‖ 6 c31ε and var
(
eTHo(t)e

)
6 τ2/N .

Using the variable exclusion method, we isolate principle parts of functionals
that will be needed below.

Lemma 4.1. For t > 0
1◦
∣∣tExTHo(t)ĝ

∣∣ 6M1/4c32ε;
2◦ var

(
txTHo(t)ĝ

)
6
√
M c42/N .

Lemma 4.2. For t > 0
1◦ tEeTHo(t)ĝ = tso(t)EeTHo(t)g + o, where |o| 6 c31ε;
2◦ tEĝTHo(t)ĝ = σ2

(
1− so(t)

)
+ tso(t)EgTHo(t)ĝ + o1

= σ2
(
1− so(t)

)
+ ts2

o(t)EgTHo(t)g + o2,
where |o1| 6

√
M c32ε and |o2| 6

√
M c32ε.

Lemma 4.3. For t > u > 0

tuEĝTHo(t)SHo(u)ĝ = tso(t)uso(u)EĝTHo(t)ΣHo(u)ĝ

+
(
1− so(u)

)
tEĝTHo(t)ĝ +

(
1− so(t)

)
uEĝTHo(u)ĝ

+ σ2
(
1− so(t)

)(
1− so(u)

)
+ o,

where |o| 6 √M c42ε.

To pass to C, H, and ĝ, we use the identities C = S − x xT and H(t) =
Ho(t) + tHo(t)x xTH(t). Denote U(t) = eTH(t)x, Ψ(t) = xTH(t)x.
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Lemma 4.4.
1◦ U(t) = V (t) + tU(t)Φ(t),

(
1 + tΨ(t)

)(
1− tΦ(t)

)
= 1;

2◦ ts2
o(t)

(
EU(t)

)2 6 c63ε
2;

3◦ tso(t)Ψ(t) = 1− so(t) + o, where o2 6 c74ε
2.

Denote

ĥ(t) = n−1 tr H(t), h(t) = Eĥ(t), s(t) = 1− λ+ λh(t).

It is easy to verify that for t > 0 0 < s(t) 6 (1 + τλ)−1.

Lemma 4.5.
1◦ ‖EH(t)−EHo(t)‖ 6 min(c74ε

2, c32ε);
2◦ |s(t)− so(t)| 6 c11/N .

Denote

φ(t) = tgT (I + tΣ)−1g, κ(t) = s(t)φ
(
ts(t)

)
+ σ2

(
1− s(t)).

Lemma 4.6.
1◦ tEgTH(t)ĝ = ts(t)EgTH(t)g + o, where |o| 6 √M c42ε;
2◦ tEĝTH(t)ĝ = σ2

(
1− s(t))+ ts(t)EgTH(t)ĝ + o1 = κ(t) + o2,

where |o1| 6
√
M c42ε and |o2| 6

√
M c42ε.

Lemma 4.7. For t > u > 0
1◦ tu

∣∣EĝTH(t)ΣH(u)ĝ −EĝTHo(t)ΣHo(u)ĝ
∣∣ 6 √M c63ε;

2◦ tu
∣∣EĝTH(t)CH(u)ĝ −EĝTHo(t)SHo(u)ĝ

∣∣ 6 √M c43ε.

Theorem 4.1. For t > u > 0

tu
∣∣EĝTH(t)CH(u)ĝ

∣∣ = tus(t)s(u)ED(t, u) +
(
1− s(u)

)
tEĝTH(t)ĝ

+
(
1− s(t))uEĝTH(u)ĝ + σ2

(
1− s(t))(1− s(u)

)
+ o,

where D(t, u) is defined by (4.6) and |o| 6 √M c63ε.

We isolate the principle part of the quadratic risk R1, first, in terms of sample
characteristics, i. e., in form of a function of C and ĝ. The principle parts of
Ek̂Tg and Ek̂TΣk̂ are integrals of sample functions (with respect to the measure
η(t).) Expressions for these are prepared by 4.6 and Theorem 4.1. We consider the
statistics

ŝ(t) = 1− λ+N−1 tr(I + tC)−1, κ̂(t) = tĝTH(t)ĝ,

K̂(t, u) def= tuĝTH(t)CH(u)ĝ =
tκ̂(u)− uκ̂(t)

t− u , t, u > 0,

∆̂(t, u) = K̂(t, u)− (1− ŝ(t))κ̂(u)− (1− ŝ(u)
)
κ̂(t) + σ̂2

(
1− ŝ(t))(1− ŝ(u)

)
,

where K̂(t, u) is continuously extended for t = u.
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Lemma 4.8. For t > u > 0

s(t)s(u)ED(t, u) = E∆̂(t, u) + o, where E|o| 6
√
M c63ε.

It is convenient to replace the dependence of functionals on η(t) by the depen-

dence on function ρ(t) of the form ρ(t) def=
∫

06x6t

1
s(x)

dη(x). We note that the

function tkρ(t) has a variation on [0,∞) that does not exceed
√
M ηk+1λ. Let us

consider the quadratic risk (4.3) as a function of ρ(t): R = E∆2 = R(η) = R(ρ).

Theorem 4.2. The statistic

R̂ = R̂(ρ) = σ̂2 − 2
∫ [

κ̂(t)− σ̂2
(
1− ŝ(t))] dρ(t) +

∫∫
∆̂(t, u) dρ(t) dρ(u)

is an estimator of R = R(ρ) for which ER̂(ρ) = R(ρ) + o, where |o| 6 √M η8c05ε.

This theorem presents an estimator approximating the quadratic risk with such
accuracy.

Now we find a non-random principle part of the quadratic risk. Denote

K(t, u) =
tκ(u)− uκ(t)

t− u ,

∆(t, u) = K(t, u)− (1− s(t))κ(u)− (1− s(u)
)
κ(t) + σ2

(
1− s(t))(1− s(u)

)
,

where the function K(t, u) is continuously extended for t = u.

Theorem 4.3. The quadratic risk R = R(ρ) = Ro(ρ) + o, where

Ro(ρ) def= σ2 − 2
∫
s(t)φ

(
ts(t)

)
dρ(t) +

∫∫
∆(t, u) dρ(t) dρ(u),

and |o| 6 √M η6c05
√
ε.

In a special case, let η(x) = α ind(x > t) for α, t > 0, and Ro(ρ) = Ro(t, α)
(“shrinkage ridge regression”.) We pass to the limit as N → ∞ and n → ∞,
supposing matrices Σ to be non-degenerate for all n and

λ = n/N → λ∗ < 1, γ → 0, ε→ 0, σ2 → σ2
∗, r2 = gTΣ−1g/σ2 → r2

∗.

Example 1. Under these conditions, let α = 1 and t→∞ (we pass to the standard
non-regularized regression under i.d.a.) Then

s(t)→ 1− λ∗, s′(t)→ 0, φ
(
ts(t)

)→ σ2
∗r

2
∗,

κ(t)→ κ(∞) def= σ2
∗r

2
∗(1− λ∗) + σ2

∗λ∗, tκ′(t)→ 0.

The quadratic risk (4.3) tends to a limit R∗ such that

lim
t→∞

lim
N→∞
ε→0

∣∣Ro(1, t)−R∗
∣∣ = 0

and
R∗

def= σ2
∗(1− λ∗)−1(1− r2

∗).

For normal distributions, this limit expression was obtained by I. S. Eniukov (see
in [31]). It explicitly shows the dependence of the standard regression quality on
the dimension of observations and sample size.
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Example 2. Under the same conditions for a fixed t, let us choose the parameter
α in an optimal way: α = α0(t) = s2(t)φ

(
ts(t)

)
/∆(t, t). Then, let us tend t to

infinity. We have

R(α0, t)→ R∞
def= σ2

∗(1− r2
∗)
[
λ∗ + (1− λ∗)r2

∗
]/[

λ∗(1− r2
∗) + (1− λ∗)r2

∗
]
.

The value R∞ 6 σ2
∗(1 − r2

∗)/(1 − λ∗). As λ∗ → 1, the weight coefficient α0 → 0
in such a way that the quadratic risk remains finite (it tends to σ2

∗) in spite of no
regularization.

5. Improvement of the discriminant analysis

In [8], the limit theory of generalized linear discriminant procedures was devel-
oped (using a superposition of “ridge estimators” of the inverse covariance matrix)
for the analysis of n-dimensional observations as n→∞ and n/N → λ > 0, where
N are sample sizes, for two normal populations with coinciding unknown covari-
ance matrices. In the same paper, an extremum limit solution was found. Here
we describe a generalization of this theory that is valid for a fixed dimension of
observations and for fixed sample sizes.

We consider two n-dimensional populations Sν = N(aν ,Σ), ν = 1, 2, with a
common covariance matrix Σ. Let Xν = {xm}, ν = 1, 2, be samples (we mean a
through numeration of sample vectors) of size Nν > n > 1 from populations Sν ,
ν = 1, 2, N = N1 +N2, xν are sample means of the form (0.1), ν = 1, 2, and C is a
pooled sample covariance matrix (1.3). We denote H = H(t) = (I + tC)−1, t > 0.

We study a class K of linear discriminant functions, introduced in [8], of the form

(5.1) w(x) = (x1 − x2)TΓ(C)
(
x− (x1 + x2)/2

)
,

where Γ(C) =
∫
t(I + tC)−1 dη(t) is a matrix diagonalizing along with C with

eigenvalues that are integrals
∫
t(1 + tλ)−1 dη(t), where λ are eigenvalues of C. We

assume that η(t) is a function of bounded variation that has a sufficient number of

moments ηk =
∫
tk |dη(t)|, k = 1, 2 . . . .

Let the discriminant rule be of the form w(x) > θ against w(x) 6 θ, where θ is
a threshold of classification. Probabilities of errors (1.1) depend on samples and on
the parameters η(t) and θ; we denote

(5.2) α(η) def= min
θ

(α1 + α2)/2 = Φ(−
√
J/2),

where J = J(η) = G2/D, G = G1 − G2 and, conditional under fixed samples,
moments Gν , ν = 1, 2, and variance D are equal to

Gν = E
(
w(x) | X1,X2,x ∈ S1

)
= (x1 − x2)TΓ(C)

(
aν − (x1 + x2)/2

)
,

D = var
(
w(x) | X1,X2,x ∈ Sν

)
= (x1 − x2)TΓ(C)ΣΓ(C)(x1 − x2), ν = 1, 2.

We denote

x = x1 − x2, k(t) = txTH(t)x,

gν(t) = t(x1 − x2)TH(t)
(
aν − (x1 + x2)/2

)
, ν = 1, 2,

d(t, u) = tuxTH(t)ΣH(u)x.
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By definition,

Gν =
∫
gν(t) dη(t), ν = 1, 2, D =

∫∫
d(t, u) dη(t) dη(u).

It is convenient to introduce a single scale parameter

(5.3) L = max
(
3‖Σ1‖, 3‖Σ2‖,a2

)
, where the vector a = a1 − a2.

To be concise in estimates of the remainder terms, we denote cj = amax(1, Ljtj),
j = 1, 2, . . . , where a are absolute constants, n0 = min(N1 − 1, N2 − 1), and
ε =

√
γ + 1/N .

We define y = n/N , yν = n/Nν , ν = 1, 2, h(t) = n−1E tr H(t),
and R(t) =

(
I + ts(t)Σ

)−1.
We construct the following statistics to approximate functions h(t), s(t), g1(t)

(estimators of g1(t) and g2(t) are symmetrical) and d(t, u):

ĥ(t) = n−1 tr H(t), ŝ(t) = 1− t tr
(
H(t)C

)
/N,

ĝ1(t) = k(t)/2− (1− ŝ(t))/ŝ(t),
d̂(t, u) = tuxTH(t)CH(u)x.

Theorem 5.1. For 0 6 y 6 1 and 0 6 u 6 t
1◦ E

(
ĥ(t)− h(t)

)2 6 τ2/N , E
(
ŝ(t)− s(t))2 6 c2/N ;

2◦ Ek(t) = taT
(
I + ts(t)Σ

)−1
a + (y1 + y2)

(
1−h(t)

)
/s(t) + o, where o2 6 c7ε2;

3◦ (1− y)2E
(
ĝν(t)− gν(t)

)2 6 c12ε
2, ν = 1, 2;

4◦ (1− y)2E
[
d̂(t, u)

/(
ŝ(t)ŝ(u)

)− d(t, u)
]2 6 c12ε

2.

The problem of estimating of two moments of the discriminant function can be
solved as follows. Denote

Ĝν = Ĝν(η) =
∫
ĝν(t) dη(t), ν = 1, 2,

D̂ = D̂(η) =
∫∫

d̂(t, u)
ŝ(t)ŝ(u)

dη(t) dη(u).

Theorem 5.2. For 0 6 y 6 1
1◦ (1− y)2(EĜν −EGν)2 6 aη10ε

2, ν = 1, 2;
2◦ var Gν 6 aη4/n0, (1− y)2var Ĝν 6 aη4/n0, ν = 1, 2;
3◦ (1− y)4(ED̂ −ED)2 6 aη12ε

2;
4◦ var D 6 aη6/n0, var D̂ 6 aη4/n0, ν = 1, 2,

where a are absolute constants.

We construct the statistic

Ĵ(η) =

[∫ (
k(t)− (y1 + y2)

(
1− ĥ(t)

)
/ŝ(t)

)
dη(t)

]2

∫∫ [
uk(t)− tk(u)

]
/
[
ŝ(t)ŝ(u)(u− t)] dη(t) dη(u)

.



22 V. I. SERDOBOLSKII

Theorem 5.3. For 0 < y < 1 the inequality holds (1−y)2EDD̂
∣∣Ĵ(η)−J(η)

∣∣ 6 η9ε.

This theorem makes it possible to estimate the probability of error α(η) by sam-
ple with a small bias and a small variance under i.d.a.. Passing to the limit, we
obtain limit formulas of paper [8]. The functional Ĵ(η) is a ratio of two quadratic in
η(t) expressions, and an obvious minimization is possible. In [8] this minimization
is carried out for limit formulas under some additional assumptions, and limit ex-
tremum condition are found. Let us formulate this result in a form of two theorems.

Under A. N. Kolmogorov’s approach, we consider a sequence (1.4) of problems Pn

of discriminant analysis of observations from populations Sν = N(aν ,Σ), ν = 1, 2,
with the discriminant function (5.1).

Theorem 5.4. Suppose that in {Pn}
(A) conditions of Theorem 1.2 are satisfied for the covariance matrices Σ;
(B) the ratios y = n/N → y∗ > 0, yν = n/Nν → y∗ν , ν = 1, 2;
(C) functions taT (I + tΣ)−1a→ φ∗(t) uniformly in t > 0.
Then

1◦ uniformly in t > 0 h(t) → h∗(t), s(t) → s∗(t), and in probability
k(t)→ k∗(t);

2◦ in probability Gν → G∗ν , ν = 1, 2, and D → D∗;
3◦ if D∗ > 0, then the sample dependent probability of error (5.2) tends to

α∗ = α∗(η) = Φ
(−√J∗/2) in probability, where J∗ = (G∗1 −G∗2)2/D∗.

Theorem 5.5. Suppose that in {Pn} the conditions (A)–(C) of Theorem 5.4 are
satisfied; moreover, for each n in a system of coordinates, where the matrix Σ
is diagonal, the inequality maxi a2

i /λi < c is valid, where ai are components of the
vector a = a1−a2 corresponding to the eigenvalues λi of the matrix Σ, i = 1, . . . , n,
and c does not depend on n.

Then the analytical continuations of functions s∗(z), φ∗(z) and k∗(z) satisfy the
Hölder condition on the plane of complex z.

If, in addition, the integral equation
∫

(z + t)−1 dη(t) = Im
(
s∗(−z)φ∗(−z))/Im k∗(−z)

is solvable for all z > 0, where Im k∗(−z) > 0, and its solution η(t) = ηo(t) is a
function of bounded variation on [0,∞), then α∗(ηo) = infη α∗(η).

Example 1. Suppose that η(t) is a step-wise function with a unit step at the
point t, and t → ∞. This corresponds to a vanishing “ridge” regularization and a
transition to the standard procedure. Then

h∗(t)→ 0, s∗(t)→ 1, G∗1 → (J∗/2− y∗1)/(1− y∗),
D∗ → (J∗ + y∗1 + y∗2)/(1− y∗)3

and
J∗ → J∗2o (1− y∗)/(J∗o + y∗1 + y∗2),

where J∗o = limn→∞ aTΣ−1a in agreement with the Deev formula (Theorem 1.1.)
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Example 2. Let a limit distribution of eigenvalues of matrices Σ exist such that it
is described by the “ρ-model” (see [8]) of limit spectra depending on two parameters
0 6 ρ < 1 and σ > 0. In this case, the limit spectral equation (1.6) has an explicit
analytical solution. Suppose that η(x) = ind(x 6 t), t > 0 (“ridge regularization”of
the discriminant function.) Let for each n for each i, the ratios a2

i /λi be equal to
each other and equal to Jn/n, where ai are components of the vector a in a system
of coordinates, where Σ is diagonal, corresponding to the eigenvalues λi of the
matrix Σ, i = 1, . . . , n (“equal contribution model”), and Jn = aTΣ−1a. Then as
n→∞ the limit exists J∗o = lim Jn and the limit value of J = J(t) defined by (5.2)
is of the form

J∗(t) = J∗2o
(
1− y∗ + 2y∗h∗(t)− (ρ+ y∗)h∗2(t)

)
/(J∗o + y∗1 + y∗2).

The maximum is attained for t = to = ρy∗/(σ2(1− ρ2)) and equals to

J∗(to) = max
t
J∗(t) = J∗2o

(
1− ρy∗/(ρ+ y∗)

)
/(J∗o + y∗1 + y∗2).

6. Normalization in estimating the multivariate procedures quality

In Sections 3–5, we saw that a number of functionals measuring the quality of
multivariate procedures can be reliably estimated in i.d.a. under the hypothesis
of observation normality. In this section, following [29], we establish this property
for five classes of rotation invariant functionals of the quality function type for
(regularized) multivariate procedures including most often used ones.

As before, we restrict populations S by an assumption that vectors x from S
have the expectation value Ex = 0, and fourth moments of all components exist.

We introduce a measure of the “functionals normalizability”. We say that func-
tion f : Rn → R1 of a random argument x is ε-normalizable (everywhere here in
the square mean) for a class of populations K if for any population S ∈ K there
exists a normal random value y ∼ N(a,Σ) with the same moments a = Ex and
Σ = cov(x,x) as in S and such one that E

∣∣f(x)− f(y)
∣∣2 6 ε.

Example 1. Let n = 1, ξ ∼ N(0, 1), function f(x) = x. For a population given
by random x = ξ3/15, this function is ε-normalizable (by y = ξ) with ε = 0.18.

Example 2. Let function f(t) has the first and the second derivative for t > 0
that are bounded in absolute value by b1 and b2. Then for populations, in which
all variables have all the first and fourth moments and the parameter (3.1) exists,
the function f(x2) with the argument defined by (0.1) is ε-normalizable with ε =
4b21d+ 16b22d

2, where d = var(x2) 6My(2 + y)/N , y = n/N .

Example 3. Let all variables in a population have all first and fourth moments and
the parameters (3.1) and (3.2) exist. Then by Theorem 3.4, the matrix elements of
the resolvent H = (I + tC)−1 are ε-normalizable with ε = c63(γ + 1/N) for t > 0,
where c63 is defined by (3.8).

We investigate the normalizability of functionals of the quality function type
involving resolvents of sample covariance matrices S and C. Let S1, . . . ,Sk be
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n-dimensional populations with expectation values Eix = ai and covi(x,x) = Σi
and moments Mi of the form (3.1) for x from Si, i = 1, . . . , k. Let Xi = {xm} be
a sample from Si of size Ni; denote yi = n/Ni; let xi be sample mean and

Si = N−1
Ni∑
m=1

(xm − ai)(xm − ai)T ,

Ci = N−1
Ni∑
m=1

(xm − xi)(xm − xi)T , i = 1, . . . , k.

We consider the following classes of functionals:
The class L1 =

{
Φ1(t,A)

}
of functionals of the form n−1 tr Γ and of the form

xT1 Γx1, where Γ = (I + A + tS1)−1 or Γ = (I + A + tC1)−1, 0 6 t < c1, and A are
non-random symmetric non-negatively definite matrices.

The class L2 =
{

Φ2(t0, t1, . . . , tk)
}

of functionals of the form

n−1 tr Γ and xTi Γxi, i = 1, . . . , k, for 0 6 ti < c2, i = 0, 1, . . . , k,

where Γ = (I + t0A + t1S1 + · · ·+ tkSk)−1 or Γ = (I + t0A + t1C1 + · · ·+ tkCk)−1

and A are non-random symmetric non-negatively definite matrices n× n.
The class L3 =

{
Φ3(t0, t1, . . . , tk)

}
of functionals that are all possible (and

mixed) partial derivatives Φ2(t0, t1, . . . , tk) with respect to arguments 0 < t0, t1, . . . ,
tk < c3.

The class L4 =
{

Φ4(ρ0, ρ1, . . . , ρk)
}

of functionals n−1 tr Γ, where

Γ =
∫

Φ3(t0, t1, . . . , tk) dρ0(t0) dρ1(t1) · · · dρk(tk),

and functions ρi(t), i = 1, . . . , k, are defined and have a bounded variation on [0, c4].
The class L5 =

{
Φ5(z1, . . . , zk)

}
, where Φ5 are differentiable functions of

z1, . . . , zm with derivatives bounded by a constant c5 in absolute value and with
arguments that are equal to functionals from L4.

We note that the class L3 includes well-known rotation invariant functionals
(a− αx)2 (where a = Ex, α is a non-random scalar), (x− a)TΣ−1(x− a),
(x−a)TS−1

α (x−a) and (x−a)TC−1
α (x−a), where (and in the following) Sα = S+αI,

Cα = C+αI, and α > 0 are the regularization parameters, as well as the functionals

n−1 tr(S−1
α − Σ−1)2, n−1 tr(C−1

α − Σ−1)2, n−1 tr(I− S−1
α Σ)2,

n−1 tr(I−C−1
α Σ)2, (x− a)TC−1

α ΣC−1
α (x− a), (x1 − x2)TC−1

12 (x1 − x2),

where C12 = α0I + α1C1 + α2C2, α0, α1, α2 > 0 (the latter functionals are used
in the “ridge” linear discriminant analysis.) The class L4 includes functionals mea-
suring the quality of a number of procedures with a “generalized ridge estimator”
of the inverse covariance matrix (see [7; Chapter 2]).
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Theorem 6.1. Let P = {Pn} be a sequence of problems

Pn = (Sν ,aν ,Mν , Nν , ν = 1, . . . , k; Φi, i = 1, . . . , 5)n, n = 1, 2, . . . ,

of the analysis of observations x ∈ Rn from populations Sν with Ex = aν and
moments Mν of the form (3.1), ν = 1, . . . , k. Let the constants c1 − c5 and k do
not depend on n.

Suppose that for all ν = 1, ..., k for n = 1, 2, . . .
(A) the values Mν and a2

ν are uniformly bounded;
(B) for populations Sν , values (3.2) vanish as n→∞;
(C) the ratios n/Nν are uniformly bounded;
(D) the variation of functions ρν(t) is uniformly bounded on [0, c4].
Then functionals from the classes L1–L5 are ε-normalizable with ε→ 0.

Discussion

Thus, in recent years, a new method of asymptotic investigation was developed
in mathematical statistics called the increasing dimension asymptotics (i.d.a.) that
takes into account specific effects produced by the estimation of a large number of
parameters, in which an essential role plays the ratio of the observation dimension
to sample size. It can be called a theory of essentially multivariate, or, more
precisely, of essentially multi-parametric phenomena. These phenomena are caused
by an additional averaging (“self-averaging”, “mixing”) over a large number of
weakly dependent variables. The additional averaging makes functions of large
number of variables insensitive to details of distributions so that principal terms of
i.d.a. depend only on two first moments of variables. In this sense, the essentially
multivariate problems prove to be “normalizable”. This approach can be called a
theory of statistical analysis by only two first moments of variables (sample and
true ones) under conditions of bounded dependence of a large number of variables.

The bounded dependence conditions sufficient for application of our theorems
are defined by two parameters: the maximum fourth moment M of the observation
vectors projection onto non-random axes (3.1) and a measure γ of the quadratic
form variance (3.2). For normal distributions (0n,Σn), the moment M = 3‖Σn‖2,
and γ = n−22 tr Σ2

n/3‖Σn‖2 (‖Σn‖ is the spectral norm.) For independent compo-
nents of x, the value γ = O(n−1).

In contrast to asymptotic approach of [3]–[6], [8], [10]–[15] and [18]–[26], the
theory developed in Sections 3–6 makes it possible to isolate principle parts of
functions for any fixed dimension of observations n and for any fixed sample sizes N .
The remainder terms are estimated from above with accuracy to absolute constants.
Their small value is guaranteed under bounded moments M , bounded ratios n/N ,
large N , and small γ. The results of previous investigations in multivariate analysis
carried out under an assumption of normality (in particular, [3]–[6], [11]–[13], [16],
[32] and [33]) can be extended to distributions of wider classes. The inaccuracy
of such extension of the domain of applicability can be estimated by methods of
Section 6.

The problem of stability of estimates to an extension of the class of populations
(to “contamination” of samples) was eagerly discussed after well-known papers by
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Tukey (1960) concerned with the stability of scale estimators. The discussion stim-
ulated a series of investigations on the construction of various “robust” estimators.
We note that, until now, only one class of stable multivariate estimators is known,
namely, the class of exponentially weighted estimators [34]; [7], Chapter 8. However,
these estimators rapidly lose their effectivity with the increase of the dimension,
and that can be explained by an absence of assumptions restricting properties of
contaminations. Now we are able to enrich well-known robust methods for prob-
lems of bounded dimension with essentially multivariate methods. In those cases,
when the class of contaminations is characterized by a priori bounded moments
M and small γ, the obtained above essentially multivariate solutions prove to be
certainly robust. Their stability is due to the regularization of procedures and the
insensitivity to higher moments.

Dealing mainly with one-dimensional problems until recently, asymptotic meth-
ods of statistics obtain an additional mathematical tool for the account of essentially
multivariate phenomena. Its characteristic feature is an introduction of a multiple
description of variables in terms of empirical distribution functions, which repre-
sents a large number of boundedly dependent variables. Functionals constructed
using empirical distributions of a large number of restrictively dependent variables
prove to be approximately normalizable and, in this sense, distribution free. These
functionals include standard quality functions of regularized modifications of mostly
used procedures. As a result, we have a possibility to construct ε-unimprovable
multivariate procedures free from hypotheses on distributions.

The following general approach can be offered for the solution of essentially
multivariate statistical problems.

1. Equations are derived connecting principal parts of functionals dependent on
parameters and functionals dependent on estimators under i.d.a. (spectral equa-
tions, in particular) and upper estimates of their variance are obtained. These
equations are used to investigate spectral properties of unknown covariance matri-
ces (Section 3), for sharpening of estimates and for the stabilization and refinement
of multivariate procedures (Sections 4 and 5.) Small variance of functionals mea-
suring the quality of statistical procedures under i.d.a. provides the possibility to
reliably estimate their quality and to guarantee the improvement.

2. A class of generalized multivariate procedures is introduced depending on a
priori parameters and functions.

3. Principle parts of quality functions are singled out under i.d.a. and are
expressed, first, in terms of parameters of the populations (that is of theoretical
importance), and, second, in terms of functions of statistics (for applications.)

4. An extremum problem is solved for principle parts of quality functions, and
conditions of the extremum in a class are found.

5. Inaccuracy of the extremum solution is estimated.
However, a question arises whether the accuracy of asymptotic expressions and

quality estimates is sufficient for applications. The remainder terms of the i.d.a.
have an order of magnitude of

√
γ + 1/N , where in the best case γ = O(n−1).

Efforts to improve solutions lead to a problem of the recovery of the parameter
distribution function by the distribution of estimates, and here the accuracy de-
creases. Here, in all cases, an additional regularization is necessary: in solution of
ill-conditioned inverse problems, in using derivatives of empirical step-wise func-
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tions, and in solution of the Fredholm integral equations of the first kind. The
nature of these difficulties is the same as in a classical problem of a distribution
function estimation. The interval of averaging of empirical functions must be suffi-
ciently small to single out the regularity, and at the same time, sufficiently large for
reliable judgments. As a result, the inaccuracy of modified procedures can increase
to O(n−α), where α > 0 is small (in [35] α = 1/4).

Summing up, we can formulate a general conclusion: the approach developed
above makes it possible to suggest reliable distribution free estimators of quality
functions for a number of multivariate procedures and open a way, where one can
search for improved and, possibly, approximately unimprovable solutions. In this
direction, only first steps are made.
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